Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.17b Structured version   Visualization version   GIF version

Theorem jm2.17b 39902
Description: Weak form of the second half of lemma 2.17 of [JonesMatijasevic] p. 696, allowing induction to start lower. (Contributed by Stefan O'Rear, 15-Oct-2014.)
Assertion
Ref Expression
jm2.17b ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁))

Proof of Theorem jm2.17b
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7142 . . . . . 6 (𝑎 = 0 → (𝑎 + 1) = (0 + 1))
21oveq2d 7151 . . . . 5 (𝑎 = 0 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (0 + 1)))
3 oveq2 7143 . . . . 5 (𝑎 = 0 → ((2 · 𝐴)↑𝑎) = ((2 · 𝐴)↑0))
42, 3breq12d 5043 . . . 4 (𝑎 = 0 → ((𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎) ↔ (𝐴 Yrm (0 + 1)) ≤ ((2 · 𝐴)↑0)))
54imbi2d 344 . . 3 (𝑎 = 0 → ((𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (0 + 1)) ≤ ((2 · 𝐴)↑0))))
6 oveq1 7142 . . . . . 6 (𝑎 = 𝑏 → (𝑎 + 1) = (𝑏 + 1))
76oveq2d 7151 . . . . 5 (𝑎 = 𝑏 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (𝑏 + 1)))
8 oveq2 7143 . . . . 5 (𝑎 = 𝑏 → ((2 · 𝐴)↑𝑎) = ((2 · 𝐴)↑𝑏))
97, 8breq12d 5043 . . . 4 (𝑎 = 𝑏 → ((𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎) ↔ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)))
109imbi2d 344 . . 3 (𝑎 = 𝑏 → ((𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏))))
11 oveq1 7142 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝑎 + 1) = ((𝑏 + 1) + 1))
1211oveq2d 7151 . . . . 5 (𝑎 = (𝑏 + 1) → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm ((𝑏 + 1) + 1)))
13 oveq2 7143 . . . . 5 (𝑎 = (𝑏 + 1) → ((2 · 𝐴)↑𝑎) = ((2 · 𝐴)↑(𝑏 + 1)))
1412, 13breq12d 5043 . . . 4 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎) ↔ (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1))))
1514imbi2d 344 . . 3 (𝑎 = (𝑏 + 1) → ((𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1)))))
16 oveq1 7142 . . . . . 6 (𝑎 = 𝑁 → (𝑎 + 1) = (𝑁 + 1))
1716oveq2d 7151 . . . . 5 (𝑎 = 𝑁 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (𝑁 + 1)))
18 oveq2 7143 . . . . 5 (𝑎 = 𝑁 → ((2 · 𝐴)↑𝑎) = ((2 · 𝐴)↑𝑁))
1917, 18breq12d 5043 . . . 4 (𝑎 = 𝑁 → ((𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎) ↔ (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁)))
2019imbi2d 344 . . 3 (𝑎 = 𝑁 → ((𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁))))
21 1le1 11257 . . . 4 1 ≤ 1
22 0p1e1 11747 . . . . . . 7 (0 + 1) = 1
2322oveq2i 7146 . . . . . 6 (𝐴 Yrm (0 + 1)) = (𝐴 Yrm 1)
24 rmy1 39871 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
2523, 24syl5eq 2845 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (0 + 1)) = 1)
26 2re 11699 . . . . . . . 8 2 ∈ ℝ
27 eluzelre 12242 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
28 remulcl 10611 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
2926, 27, 28sylancr 590 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℝ)
3029recnd 10658 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℂ)
3130exp0d 13500 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((2 · 𝐴)↑0) = 1)
3225, 31breq12d 5043 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴 Yrm (0 + 1)) ≤ ((2 · 𝐴)↑0) ↔ 1 ≤ 1))
3321, 32mpbiri 261 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (0 + 1)) ≤ ((2 · 𝐴)↑0))
34 simpr 488 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ (ℤ‘2))
35 nn0z 11993 . . . . . . . . . . 11 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
3635adantr 484 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℤ)
3736peano2zd 12078 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝑏 + 1) ∈ ℤ)
38 rmyluc2 39879 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))))
3934, 37, 38syl2anc 587 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))))
40 rmxypos 39888 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏)))
4140simprd 499 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → 0 ≤ (𝐴 Yrm 𝑏))
4241ancoms 462 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 0 ≤ (𝐴 Yrm 𝑏))
43 nn0re 11894 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
4443adantr 484 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℝ)
4544recnd 10658 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℂ)
46 ax-1cn 10584 . . . . . . . . . . . 12 1 ∈ ℂ
47 pncan 10881 . . . . . . . . . . . 12 ((𝑏 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑏 + 1) − 1) = 𝑏)
4845, 46, 47sylancl 589 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝑏 + 1) − 1) = 𝑏)
4948oveq2d 7151 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) − 1)) = (𝐴 Yrm 𝑏))
5042, 49breqtrrd 5058 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 0 ≤ (𝐴 Yrm ((𝑏 + 1) − 1)))
5127adantl 485 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ ℝ)
5226, 51, 28sylancr 590 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (2 · 𝐴) ∈ ℝ)
53 frmy 39855 . . . . . . . . . . . . . 14 Yrm :((ℤ‘2) × ℤ)⟶ℤ
5453fovcl 7258 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) ∈ ℤ)
5554zred 12075 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) ∈ ℝ)
5634, 37, 55syl2anc 587 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm (𝑏 + 1)) ∈ ℝ)
5752, 56remulcld 10660 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∈ ℝ)
5853fovcl 7258 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
5958zred 12075 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℝ)
6034, 36, 59syl2anc 587 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm 𝑏) ∈ ℝ)
6149, 60eqeltrd 2890 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) − 1)) ∈ ℝ)
6257, 61subge02d 11221 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (0 ≤ (𝐴 Yrm ((𝑏 + 1) − 1)) ↔ (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1)))))
6350, 62mpbid 235 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))))
6439, 63eqbrtrd 5052 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))))
65643adant3 1129 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))))
66 simpl 486 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℕ0)
6752, 66reexpcld 13523 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴)↑𝑏) ∈ ℝ)
68 2nn 11698 . . . . . . . . . . . 12 2 ∈ ℕ
69 eluz2nn 12272 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
70 nnmulcl 11649 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (2 · 𝐴) ∈ ℕ)
7168, 69, 70sylancr 590 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℕ)
7271nngt0d 11674 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 < (2 · 𝐴))
7372adantl 485 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 0 < (2 · 𝐴))
74 lemul2 11482 . . . . . . . . 9 (((𝐴 Yrm (𝑏 + 1)) ∈ ℝ ∧ ((2 · 𝐴)↑𝑏) ∈ ℝ ∧ ((2 · 𝐴) ∈ ℝ ∧ 0 < (2 · 𝐴))) → ((𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏) ↔ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑏))))
7556, 67, 52, 73, 74syl112anc 1371 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏) ↔ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑏))))
7675biimp3a 1466 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑏)))
7752recnd 10658 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (2 · 𝐴) ∈ ℂ)
7877, 66expp1d 13507 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴)↑(𝑏 + 1)) = (((2 · 𝐴)↑𝑏) · (2 · 𝐴)))
7967recnd 10658 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴)↑𝑏) ∈ ℂ)
8079, 77mulcomd 10651 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴)↑𝑏) · (2 · 𝐴)) = ((2 · 𝐴) · ((2 · 𝐴)↑𝑏)))
8178, 80eqtrd 2833 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴)↑(𝑏 + 1)) = ((2 · 𝐴) · ((2 · 𝐴)↑𝑏)))
82813adant3 1129 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → ((2 · 𝐴)↑(𝑏 + 1)) = ((2 · 𝐴) · ((2 · 𝐴)↑𝑏)))
8376, 82breqtrrd 5058 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴)↑(𝑏 + 1)))
8437peano2zd 12078 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝑏 + 1) + 1) ∈ ℤ)
8553fovcl 7258 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ ((𝑏 + 1) + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℤ)
8685zred 12075 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ ((𝑏 + 1) + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ)
8734, 84, 86syl2anc 587 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ)
88 peano2nn0 11925 . . . . . . . . . 10 (𝑏 ∈ ℕ0 → (𝑏 + 1) ∈ ℕ0)
8988adantr 484 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝑏 + 1) ∈ ℕ0)
9052, 89reexpcld 13523 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴)↑(𝑏 + 1)) ∈ ℝ)
91 letr 10723 . . . . . . . 8 (((𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ ∧ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∈ ℝ ∧ ((2 · 𝐴)↑(𝑏 + 1)) ∈ ℝ) → (((𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∧ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴)↑(𝑏 + 1))) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1))))
9287, 57, 90, 91syl3anc 1368 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∧ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴)↑(𝑏 + 1))) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1))))
93923adant3 1129 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → (((𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∧ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴)↑(𝑏 + 1))) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1))))
9465, 83, 93mp2and 698 . . . . 5 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1)))
95943exp 1116 . . . 4 (𝑏 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → ((𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1)))))
9695a2d 29 . . 3 (𝑏 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1)))))
975, 10, 15, 20, 33, 96nn0ind 12065 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁)))
9897impcom 411 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  cexp 13425   Xrm crmx 39841   Yrm crmy 39842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-dvds 15600  df-gcd 15834  df-numer 16065  df-denom 16066  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148  df-squarenn 39782  df-pell1qr 39783  df-pell14qr 39784  df-pell1234qr 39785  df-pellfund 39786  df-rmx 39843  df-rmy 39844
This theorem is referenced by:  jm2.17c  39903
  Copyright terms: Public domain W3C validator