Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.17b Structured version   Visualization version   GIF version

Theorem jm2.17b 42973
Description: Weak form of the second half of lemma 2.17 of [JonesMatijasevic] p. 696, allowing induction to start lower. (Contributed by Stefan O'Rear, 15-Oct-2014.)
Assertion
Ref Expression
jm2.17b ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁))

Proof of Theorem jm2.17b
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7438 . . . . . 6 (𝑎 = 0 → (𝑎 + 1) = (0 + 1))
21oveq2d 7447 . . . . 5 (𝑎 = 0 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (0 + 1)))
3 oveq2 7439 . . . . 5 (𝑎 = 0 → ((2 · 𝐴)↑𝑎) = ((2 · 𝐴)↑0))
42, 3breq12d 5156 . . . 4 (𝑎 = 0 → ((𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎) ↔ (𝐴 Yrm (0 + 1)) ≤ ((2 · 𝐴)↑0)))
54imbi2d 340 . . 3 (𝑎 = 0 → ((𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (0 + 1)) ≤ ((2 · 𝐴)↑0))))
6 oveq1 7438 . . . . . 6 (𝑎 = 𝑏 → (𝑎 + 1) = (𝑏 + 1))
76oveq2d 7447 . . . . 5 (𝑎 = 𝑏 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (𝑏 + 1)))
8 oveq2 7439 . . . . 5 (𝑎 = 𝑏 → ((2 · 𝐴)↑𝑎) = ((2 · 𝐴)↑𝑏))
97, 8breq12d 5156 . . . 4 (𝑎 = 𝑏 → ((𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎) ↔ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)))
109imbi2d 340 . . 3 (𝑎 = 𝑏 → ((𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏))))
11 oveq1 7438 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝑎 + 1) = ((𝑏 + 1) + 1))
1211oveq2d 7447 . . . . 5 (𝑎 = (𝑏 + 1) → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm ((𝑏 + 1) + 1)))
13 oveq2 7439 . . . . 5 (𝑎 = (𝑏 + 1) → ((2 · 𝐴)↑𝑎) = ((2 · 𝐴)↑(𝑏 + 1)))
1412, 13breq12d 5156 . . . 4 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎) ↔ (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1))))
1514imbi2d 340 . . 3 (𝑎 = (𝑏 + 1) → ((𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1)))))
16 oveq1 7438 . . . . . 6 (𝑎 = 𝑁 → (𝑎 + 1) = (𝑁 + 1))
1716oveq2d 7447 . . . . 5 (𝑎 = 𝑁 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (𝑁 + 1)))
18 oveq2 7439 . . . . 5 (𝑎 = 𝑁 → ((2 · 𝐴)↑𝑎) = ((2 · 𝐴)↑𝑁))
1917, 18breq12d 5156 . . . 4 (𝑎 = 𝑁 → ((𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎) ↔ (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁)))
2019imbi2d 340 . . 3 (𝑎 = 𝑁 → ((𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁))))
21 1le1 11891 . . . 4 1 ≤ 1
22 0p1e1 12388 . . . . . . 7 (0 + 1) = 1
2322oveq2i 7442 . . . . . 6 (𝐴 Yrm (0 + 1)) = (𝐴 Yrm 1)
24 rmy1 42942 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
2523, 24eqtrid 2789 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (0 + 1)) = 1)
26 2re 12340 . . . . . . . 8 2 ∈ ℝ
27 eluzelre 12889 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
28 remulcl 11240 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
2926, 27, 28sylancr 587 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℝ)
3029recnd 11289 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℂ)
3130exp0d 14180 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((2 · 𝐴)↑0) = 1)
3225, 31breq12d 5156 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴 Yrm (0 + 1)) ≤ ((2 · 𝐴)↑0) ↔ 1 ≤ 1))
3321, 32mpbiri 258 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (0 + 1)) ≤ ((2 · 𝐴)↑0))
34 simpr 484 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ (ℤ‘2))
35 nn0z 12638 . . . . . . . . . . 11 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
3635adantr 480 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℤ)
3736peano2zd 12725 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝑏 + 1) ∈ ℤ)
38 rmyluc2 42950 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))))
3934, 37, 38syl2anc 584 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))))
40 rmxypos 42959 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏)))
4140simprd 495 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → 0 ≤ (𝐴 Yrm 𝑏))
4241ancoms 458 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 0 ≤ (𝐴 Yrm 𝑏))
43 nn0re 12535 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
4443adantr 480 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℝ)
4544recnd 11289 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℂ)
46 ax-1cn 11213 . . . . . . . . . . . 12 1 ∈ ℂ
47 pncan 11514 . . . . . . . . . . . 12 ((𝑏 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑏 + 1) − 1) = 𝑏)
4845, 46, 47sylancl 586 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝑏 + 1) − 1) = 𝑏)
4948oveq2d 7447 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) − 1)) = (𝐴 Yrm 𝑏))
5042, 49breqtrrd 5171 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 0 ≤ (𝐴 Yrm ((𝑏 + 1) − 1)))
5127adantl 481 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ ℝ)
5226, 51, 28sylancr 587 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (2 · 𝐴) ∈ ℝ)
53 frmy 42926 . . . . . . . . . . . . . 14 Yrm :((ℤ‘2) × ℤ)⟶ℤ
5453fovcl 7561 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) ∈ ℤ)
5554zred 12722 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) ∈ ℝ)
5634, 37, 55syl2anc 584 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm (𝑏 + 1)) ∈ ℝ)
5752, 56remulcld 11291 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∈ ℝ)
5853fovcl 7561 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
5958zred 12722 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℝ)
6034, 36, 59syl2anc 584 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm 𝑏) ∈ ℝ)
6149, 60eqeltrd 2841 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) − 1)) ∈ ℝ)
6257, 61subge02d 11855 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (0 ≤ (𝐴 Yrm ((𝑏 + 1) − 1)) ↔ (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1)))))
6350, 62mpbid 232 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))))
6439, 63eqbrtrd 5165 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))))
65643adant3 1133 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))))
66 simpl 482 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℕ0)
6752, 66reexpcld 14203 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴)↑𝑏) ∈ ℝ)
68 2nn 12339 . . . . . . . . . . . 12 2 ∈ ℕ
69 eluz2nn 12924 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
70 nnmulcl 12290 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (2 · 𝐴) ∈ ℕ)
7168, 69, 70sylancr 587 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℕ)
7271nngt0d 12315 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 < (2 · 𝐴))
7372adantl 481 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 0 < (2 · 𝐴))
74 lemul2 12120 . . . . . . . . 9 (((𝐴 Yrm (𝑏 + 1)) ∈ ℝ ∧ ((2 · 𝐴)↑𝑏) ∈ ℝ ∧ ((2 · 𝐴) ∈ ℝ ∧ 0 < (2 · 𝐴))) → ((𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏) ↔ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑏))))
7556, 67, 52, 73, 74syl112anc 1376 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏) ↔ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑏))))
7675biimp3a 1471 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑏)))
7752recnd 11289 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (2 · 𝐴) ∈ ℂ)
7877, 66expp1d 14187 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴)↑(𝑏 + 1)) = (((2 · 𝐴)↑𝑏) · (2 · 𝐴)))
7967recnd 11289 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴)↑𝑏) ∈ ℂ)
8079, 77mulcomd 11282 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴)↑𝑏) · (2 · 𝐴)) = ((2 · 𝐴) · ((2 · 𝐴)↑𝑏)))
8178, 80eqtrd 2777 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴)↑(𝑏 + 1)) = ((2 · 𝐴) · ((2 · 𝐴)↑𝑏)))
82813adant3 1133 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → ((2 · 𝐴)↑(𝑏 + 1)) = ((2 · 𝐴) · ((2 · 𝐴)↑𝑏)))
8376, 82breqtrrd 5171 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴)↑(𝑏 + 1)))
8437peano2zd 12725 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝑏 + 1) + 1) ∈ ℤ)
8553fovcl 7561 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ ((𝑏 + 1) + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℤ)
8685zred 12722 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ ((𝑏 + 1) + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ)
8734, 84, 86syl2anc 584 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ)
88 peano2nn0 12566 . . . . . . . . . 10 (𝑏 ∈ ℕ0 → (𝑏 + 1) ∈ ℕ0)
8988adantr 480 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝑏 + 1) ∈ ℕ0)
9052, 89reexpcld 14203 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴)↑(𝑏 + 1)) ∈ ℝ)
91 letr 11355 . . . . . . . 8 (((𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ ∧ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∈ ℝ ∧ ((2 · 𝐴)↑(𝑏 + 1)) ∈ ℝ) → (((𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∧ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴)↑(𝑏 + 1))) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1))))
9287, 57, 90, 91syl3anc 1373 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∧ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴)↑(𝑏 + 1))) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1))))
93923adant3 1133 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → (((𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∧ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴)↑(𝑏 + 1))) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1))))
9465, 83, 93mp2and 699 . . . . 5 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1)))
95943exp 1120 . . . 4 (𝑏 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → ((𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1)))))
9695a2d 29 . . 3 (𝑏 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1)))))
975, 10, 15, 20, 33, 96nn0ind 12713 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁)))
9897impcom 407 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492  cn 12266  2c2 12321  0cn0 12526  cz 12613  cuz 12878  cexp 14102   Xrm crmx 42911   Yrm crmy 42912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-dvds 16291  df-gcd 16532  df-numer 16772  df-denom 16773  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-squarenn 42852  df-pell1qr 42853  df-pell14qr 42854  df-pell1234qr 42855  df-pellfund 42856  df-rmx 42913  df-rmy 42914
This theorem is referenced by:  jm2.17c  42974
  Copyright terms: Public domain W3C validator