Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.17b Structured version   Visualization version   GIF version

Theorem jm2.17b 43081
Description: Weak form of the second half of lemma 2.17 of [JonesMatijasevic] p. 696, allowing induction to start lower. (Contributed by Stefan O'Rear, 15-Oct-2014.)
Assertion
Ref Expression
jm2.17b ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁))

Proof of Theorem jm2.17b
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7361 . . . . . 6 (𝑎 = 0 → (𝑎 + 1) = (0 + 1))
21oveq2d 7370 . . . . 5 (𝑎 = 0 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (0 + 1)))
3 oveq2 7362 . . . . 5 (𝑎 = 0 → ((2 · 𝐴)↑𝑎) = ((2 · 𝐴)↑0))
42, 3breq12d 5108 . . . 4 (𝑎 = 0 → ((𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎) ↔ (𝐴 Yrm (0 + 1)) ≤ ((2 · 𝐴)↑0)))
54imbi2d 340 . . 3 (𝑎 = 0 → ((𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (0 + 1)) ≤ ((2 · 𝐴)↑0))))
6 oveq1 7361 . . . . . 6 (𝑎 = 𝑏 → (𝑎 + 1) = (𝑏 + 1))
76oveq2d 7370 . . . . 5 (𝑎 = 𝑏 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (𝑏 + 1)))
8 oveq2 7362 . . . . 5 (𝑎 = 𝑏 → ((2 · 𝐴)↑𝑎) = ((2 · 𝐴)↑𝑏))
97, 8breq12d 5108 . . . 4 (𝑎 = 𝑏 → ((𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎) ↔ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)))
109imbi2d 340 . . 3 (𝑎 = 𝑏 → ((𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏))))
11 oveq1 7361 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝑎 + 1) = ((𝑏 + 1) + 1))
1211oveq2d 7370 . . . . 5 (𝑎 = (𝑏 + 1) → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm ((𝑏 + 1) + 1)))
13 oveq2 7362 . . . . 5 (𝑎 = (𝑏 + 1) → ((2 · 𝐴)↑𝑎) = ((2 · 𝐴)↑(𝑏 + 1)))
1412, 13breq12d 5108 . . . 4 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎) ↔ (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1))))
1514imbi2d 340 . . 3 (𝑎 = (𝑏 + 1) → ((𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1)))))
16 oveq1 7361 . . . . . 6 (𝑎 = 𝑁 → (𝑎 + 1) = (𝑁 + 1))
1716oveq2d 7370 . . . . 5 (𝑎 = 𝑁 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (𝑁 + 1)))
18 oveq2 7362 . . . . 5 (𝑎 = 𝑁 → ((2 · 𝐴)↑𝑎) = ((2 · 𝐴)↑𝑁))
1917, 18breq12d 5108 . . . 4 (𝑎 = 𝑁 → ((𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎) ↔ (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁)))
2019imbi2d 340 . . 3 (𝑎 = 𝑁 → ((𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁))))
21 1le1 11754 . . . 4 1 ≤ 1
22 0p1e1 12251 . . . . . . 7 (0 + 1) = 1
2322oveq2i 7365 . . . . . 6 (𝐴 Yrm (0 + 1)) = (𝐴 Yrm 1)
24 rmy1 43050 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
2523, 24eqtrid 2780 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (0 + 1)) = 1)
26 2re 12208 . . . . . . . 8 2 ∈ ℝ
27 eluzelre 12751 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
28 remulcl 11100 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
2926, 27, 28sylancr 587 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℝ)
3029recnd 11149 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℂ)
3130exp0d 14051 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((2 · 𝐴)↑0) = 1)
3225, 31breq12d 5108 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴 Yrm (0 + 1)) ≤ ((2 · 𝐴)↑0) ↔ 1 ≤ 1))
3321, 32mpbiri 258 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (0 + 1)) ≤ ((2 · 𝐴)↑0))
34 simpr 484 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ (ℤ‘2))
35 nn0z 12501 . . . . . . . . . . 11 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
3635adantr 480 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℤ)
3736peano2zd 12588 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝑏 + 1) ∈ ℤ)
38 rmyluc2 43058 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))))
3934, 37, 38syl2anc 584 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))))
40 rmxypos 43067 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏)))
4140simprd 495 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → 0 ≤ (𝐴 Yrm 𝑏))
4241ancoms 458 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 0 ≤ (𝐴 Yrm 𝑏))
43 nn0re 12399 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
4443adantr 480 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℝ)
4544recnd 11149 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℂ)
46 ax-1cn 11073 . . . . . . . . . . . 12 1 ∈ ℂ
47 pncan 11375 . . . . . . . . . . . 12 ((𝑏 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑏 + 1) − 1) = 𝑏)
4845, 46, 47sylancl 586 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝑏 + 1) − 1) = 𝑏)
4948oveq2d 7370 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) − 1)) = (𝐴 Yrm 𝑏))
5042, 49breqtrrd 5123 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 0 ≤ (𝐴 Yrm ((𝑏 + 1) − 1)))
5127adantl 481 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ ℝ)
5226, 51, 28sylancr 587 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (2 · 𝐴) ∈ ℝ)
53 frmy 43034 . . . . . . . . . . . . . 14 Yrm :((ℤ‘2) × ℤ)⟶ℤ
5453fovcl 7482 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) ∈ ℤ)
5554zred 12585 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) ∈ ℝ)
5634, 37, 55syl2anc 584 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm (𝑏 + 1)) ∈ ℝ)
5752, 56remulcld 11151 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∈ ℝ)
5853fovcl 7482 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
5958zred 12585 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℝ)
6034, 36, 59syl2anc 584 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm 𝑏) ∈ ℝ)
6149, 60eqeltrd 2833 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) − 1)) ∈ ℝ)
6257, 61subge02d 11718 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (0 ≤ (𝐴 Yrm ((𝑏 + 1) − 1)) ↔ (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1)))))
6350, 62mpbid 232 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))))
6439, 63eqbrtrd 5117 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))))
65643adant3 1132 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))))
66 simpl 482 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℕ0)
6752, 66reexpcld 14074 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴)↑𝑏) ∈ ℝ)
68 2nn 12207 . . . . . . . . . . . 12 2 ∈ ℕ
69 eluz2nn 12790 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
70 nnmulcl 12158 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (2 · 𝐴) ∈ ℕ)
7168, 69, 70sylancr 587 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℕ)
7271nngt0d 12183 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 < (2 · 𝐴))
7372adantl 481 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 0 < (2 · 𝐴))
74 lemul2 11983 . . . . . . . . 9 (((𝐴 Yrm (𝑏 + 1)) ∈ ℝ ∧ ((2 · 𝐴)↑𝑏) ∈ ℝ ∧ ((2 · 𝐴) ∈ ℝ ∧ 0 < (2 · 𝐴))) → ((𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏) ↔ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑏))))
7556, 67, 52, 73, 74syl112anc 1376 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏) ↔ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑏))))
7675biimp3a 1471 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑏)))
7752recnd 11149 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (2 · 𝐴) ∈ ℂ)
7877, 66expp1d 14058 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴)↑(𝑏 + 1)) = (((2 · 𝐴)↑𝑏) · (2 · 𝐴)))
7967recnd 11149 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴)↑𝑏) ∈ ℂ)
8079, 77mulcomd 11142 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴)↑𝑏) · (2 · 𝐴)) = ((2 · 𝐴) · ((2 · 𝐴)↑𝑏)))
8178, 80eqtrd 2768 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴)↑(𝑏 + 1)) = ((2 · 𝐴) · ((2 · 𝐴)↑𝑏)))
82813adant3 1132 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → ((2 · 𝐴)↑(𝑏 + 1)) = ((2 · 𝐴) · ((2 · 𝐴)↑𝑏)))
8376, 82breqtrrd 5123 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴)↑(𝑏 + 1)))
8437peano2zd 12588 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝑏 + 1) + 1) ∈ ℤ)
8553fovcl 7482 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ ((𝑏 + 1) + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℤ)
8685zred 12585 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ ((𝑏 + 1) + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ)
8734, 84, 86syl2anc 584 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ)
88 peano2nn0 12430 . . . . . . . . . 10 (𝑏 ∈ ℕ0 → (𝑏 + 1) ∈ ℕ0)
8988adantr 480 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝑏 + 1) ∈ ℕ0)
9052, 89reexpcld 14074 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴)↑(𝑏 + 1)) ∈ ℝ)
91 letr 11216 . . . . . . . 8 (((𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ ∧ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∈ ℝ ∧ ((2 · 𝐴)↑(𝑏 + 1)) ∈ ℝ) → (((𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∧ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴)↑(𝑏 + 1))) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1))))
9287, 57, 90, 91syl3anc 1373 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∧ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴)↑(𝑏 + 1))) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1))))
93923adant3 1132 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → (((𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∧ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴)↑(𝑏 + 1))) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1))))
9465, 83, 93mp2and 699 . . . . 5 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1)))
95943exp 1119 . . . 4 (𝑏 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → ((𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1)))))
9695a2d 29 . . 3 (𝑏 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1)))))
975, 10, 15, 20, 33, 96nn0ind 12576 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁)))
9897impcom 407 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5095  cfv 6488  (class class class)co 7354  cc 11013  cr 11014  0cc0 11015  1c1 11016   + caddc 11018   · cmul 11020   < clt 11155  cle 11156  cmin 11353  cn 12134  2c2 12189  0cn0 12390  cz 12477  cuz 12740  cexp 13972   Xrm crmx 43020   Yrm crmy 43021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093  ax-addf 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-oadd 8397  df-omul 8398  df-er 8630  df-map 8760  df-pm 8761  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-fi 9304  df-sup 9335  df-inf 9336  df-oi 9405  df-card 9841  df-acn 9844  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-xnn0 12464  df-z 12478  df-dec 12597  df-uz 12741  df-q 12851  df-rp 12895  df-xneg 13015  df-xadd 13016  df-xmul 13017  df-ioo 13253  df-ioc 13254  df-ico 13255  df-icc 13256  df-fz 13412  df-fzo 13559  df-fl 13700  df-mod 13778  df-seq 13913  df-exp 13973  df-fac 14185  df-bc 14214  df-hash 14242  df-shft 14978  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-limsup 15382  df-clim 15399  df-rlim 15400  df-sum 15598  df-ef 15978  df-sin 15980  df-cos 15981  df-pi 15983  df-dvds 16168  df-gcd 16410  df-numer 16650  df-denom 16651  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-starv 17180  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-unif 17188  df-hom 17189  df-cco 17190  df-rest 17330  df-topn 17331  df-0g 17349  df-gsum 17350  df-topgen 17351  df-pt 17352  df-prds 17355  df-xrs 17410  df-qtop 17415  df-imas 17416  df-xps 17418  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-submnd 18696  df-mulg 18985  df-cntz 19233  df-cmn 19698  df-psmet 21287  df-xmet 21288  df-met 21289  df-bl 21290  df-mopn 21291  df-fbas 21292  df-fg 21293  df-cnfld 21296  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22864  df-cld 22937  df-ntr 22938  df-cls 22939  df-nei 23016  df-lp 23054  df-perf 23055  df-cn 23145  df-cnp 23146  df-haus 23233  df-tx 23480  df-hmeo 23673  df-fil 23764  df-fm 23856  df-flim 23857  df-flf 23858  df-xms 24238  df-ms 24239  df-tms 24240  df-cncf 24801  df-limc 25797  df-dv 25798  df-log 26495  df-squarenn 42961  df-pell1qr 42962  df-pell14qr 42963  df-pell1234qr 42964  df-pellfund 42965  df-rmx 43022  df-rmy 43023
This theorem is referenced by:  jm2.17c  43082
  Copyright terms: Public domain W3C validator