![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmxnn | Structured version Visualization version GIF version |
Description: The X-sequence is defined to range over ℕ0 but never actually takes the value 0. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
Ref | Expression |
---|---|
rmxnn | ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 11694 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
2 | frmx 38267 | . . . . . 6 ⊢ Xrm :((ℤ≥‘2) × ℤ)⟶ℕ0 | |
3 | 2 | fovcl 7003 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0) |
4 | 1, 3 | sylan2 587 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Xrm 𝑁) ∈ ℕ0) |
5 | rmxypos 38303 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑁) ∧ 0 ≤ (𝐴 Yrm 𝑁))) | |
6 | 5 | simpld 489 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 0 < (𝐴 Xrm 𝑁)) |
7 | elnnnn0b 11630 | . . . 4 ⊢ ((𝐴 Xrm 𝑁) ∈ ℕ ↔ ((𝐴 Xrm 𝑁) ∈ ℕ0 ∧ 0 < (𝐴 Xrm 𝑁))) | |
8 | 4, 6, 7 | sylanbrc 579 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Xrm 𝑁) ∈ ℕ) |
9 | 8 | adantlr 707 | . 2 ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ∈ ℕ0) → (𝐴 Xrm 𝑁) ∈ ℕ) |
10 | rmxneg 38278 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm -𝑁) = (𝐴 Xrm 𝑁)) | |
11 | 10 | adantr 473 | . . 3 ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (𝐴 Xrm -𝑁) = (𝐴 Xrm 𝑁)) |
12 | nn0z 11694 | . . . . . 6 ⊢ (-𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ) | |
13 | 2 | fovcl 7003 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ -𝑁 ∈ ℤ) → (𝐴 Xrm -𝑁) ∈ ℕ0) |
14 | 12, 13 | sylan2 587 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ -𝑁 ∈ ℕ0) → (𝐴 Xrm -𝑁) ∈ ℕ0) |
15 | rmxypos 38303 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ -𝑁 ∈ ℕ0) → (0 < (𝐴 Xrm -𝑁) ∧ 0 ≤ (𝐴 Yrm -𝑁))) | |
16 | 15 | simpld 489 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ -𝑁 ∈ ℕ0) → 0 < (𝐴 Xrm -𝑁)) |
17 | elnnnn0b 11630 | . . . . 5 ⊢ ((𝐴 Xrm -𝑁) ∈ ℕ ↔ ((𝐴 Xrm -𝑁) ∈ ℕ0 ∧ 0 < (𝐴 Xrm -𝑁))) | |
18 | 14, 16, 17 | sylanbrc 579 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ -𝑁 ∈ ℕ0) → (𝐴 Xrm -𝑁) ∈ ℕ) |
19 | 18 | adantlr 707 | . . 3 ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (𝐴 Xrm -𝑁) ∈ ℕ) |
20 | 11, 19 | eqeltrrd 2883 | . 2 ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (𝐴 Xrm 𝑁) ∈ ℕ) |
21 | elznn0 11685 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) | |
22 | 21 | simprbi 491 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) |
23 | 22 | adantl 474 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) |
24 | 9, 20, 23 | mpjaodan 982 | 1 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∨ wo 874 = wceq 1653 ∈ wcel 2157 class class class wbr 4847 ‘cfv 6105 (class class class)co 6882 ℝcr 10227 0cc0 10228 < clt 10367 ≤ cle 10368 -cneg 10561 ℕcn 11316 2c2 11372 ℕ0cn0 11584 ℤcz 11670 ℤ≥cuz 11934 Xrm crmx 38254 Yrm crmy 38255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2379 ax-ext 2781 ax-rep 4968 ax-sep 4979 ax-nul 4987 ax-pow 5039 ax-pr 5101 ax-un 7187 ax-inf2 8792 ax-cnex 10284 ax-resscn 10285 ax-1cn 10286 ax-icn 10287 ax-addcl 10288 ax-addrcl 10289 ax-mulcl 10290 ax-mulrcl 10291 ax-mulcom 10292 ax-addass 10293 ax-mulass 10294 ax-distr 10295 ax-i2m1 10296 ax-1ne0 10297 ax-1rid 10298 ax-rnegex 10299 ax-rrecex 10300 ax-cnre 10301 ax-pre-lttri 10302 ax-pre-lttrn 10303 ax-pre-ltadd 10304 ax-pre-mulgt0 10305 ax-pre-sup 10306 ax-addf 10307 ax-mulf 10308 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2593 df-eu 2611 df-clab 2790 df-cleq 2796 df-clel 2799 df-nfc 2934 df-ne 2976 df-nel 3079 df-ral 3098 df-rex 3099 df-reu 3100 df-rmo 3101 df-rab 3102 df-v 3391 df-sbc 3638 df-csb 3733 df-dif 3776 df-un 3778 df-in 3780 df-ss 3787 df-pss 3789 df-nul 4120 df-if 4282 df-pw 4355 df-sn 4373 df-pr 4375 df-tp 4377 df-op 4379 df-uni 4633 df-int 4672 df-iun 4716 df-iin 4717 df-br 4848 df-opab 4910 df-mpt 4927 df-tr 4950 df-id 5224 df-eprel 5229 df-po 5237 df-so 5238 df-fr 5275 df-se 5276 df-we 5277 df-xp 5322 df-rel 5323 df-cnv 5324 df-co 5325 df-dm 5326 df-rn 5327 df-res 5328 df-ima 5329 df-pred 5902 df-ord 5948 df-on 5949 df-lim 5950 df-suc 5951 df-iota 6068 df-fun 6107 df-fn 6108 df-f 6109 df-f1 6110 df-fo 6111 df-f1o 6112 df-fv 6113 df-isom 6114 df-riota 6843 df-ov 6885 df-oprab 6886 df-mpt2 6887 df-of 7135 df-om 7304 df-1st 7405 df-2nd 7406 df-supp 7537 df-wrecs 7649 df-recs 7711 df-rdg 7749 df-1o 7803 df-2o 7804 df-oadd 7807 df-omul 7808 df-er 7986 df-map 8101 df-pm 8102 df-ixp 8153 df-en 8200 df-dom 8201 df-sdom 8202 df-fin 8203 df-fsupp 8522 df-fi 8563 df-sup 8594 df-inf 8595 df-oi 8661 df-card 9055 df-acn 9058 df-cda 9282 df-pnf 10369 df-mnf 10370 df-xr 10371 df-ltxr 10372 df-le 10373 df-sub 10562 df-neg 10563 df-div 10981 df-nn 11317 df-2 11380 df-3 11381 df-4 11382 df-5 11383 df-6 11384 df-7 11385 df-8 11386 df-9 11387 df-n0 11585 df-xnn0 11657 df-z 11671 df-dec 11788 df-uz 11935 df-q 12038 df-rp 12079 df-xneg 12197 df-xadd 12198 df-xmul 12199 df-ioo 12432 df-ioc 12433 df-ico 12434 df-icc 12435 df-fz 12585 df-fzo 12725 df-fl 12852 df-mod 12928 df-seq 13060 df-exp 13119 df-fac 13318 df-bc 13347 df-hash 13375 df-shft 14152 df-cj 14184 df-re 14185 df-im 14186 df-sqrt 14320 df-abs 14321 df-limsup 14547 df-clim 14564 df-rlim 14565 df-sum 14762 df-ef 15138 df-sin 15140 df-cos 15141 df-pi 15143 df-dvds 15324 df-gcd 15556 df-numer 15780 df-denom 15781 df-struct 16190 df-ndx 16191 df-slot 16192 df-base 16194 df-sets 16195 df-ress 16196 df-plusg 16284 df-mulr 16285 df-starv 16286 df-sca 16287 df-vsca 16288 df-ip 16289 df-tset 16290 df-ple 16291 df-ds 16293 df-unif 16294 df-hom 16295 df-cco 16296 df-rest 16402 df-topn 16403 df-0g 16421 df-gsum 16422 df-topgen 16423 df-pt 16424 df-prds 16427 df-xrs 16481 df-qtop 16486 df-imas 16487 df-xps 16489 df-mre 16565 df-mrc 16566 df-acs 16568 df-mgm 17561 df-sgrp 17603 df-mnd 17614 df-submnd 17655 df-mulg 17861 df-cntz 18066 df-cmn 18514 df-psmet 20064 df-xmet 20065 df-met 20066 df-bl 20067 df-mopn 20068 df-fbas 20069 df-fg 20070 df-cnfld 20073 df-top 21031 df-topon 21048 df-topsp 21070 df-bases 21083 df-cld 21156 df-ntr 21157 df-cls 21158 df-nei 21235 df-lp 21273 df-perf 21274 df-cn 21364 df-cnp 21365 df-haus 21452 df-tx 21698 df-hmeo 21891 df-fil 21982 df-fm 22074 df-flim 22075 df-flf 22076 df-xms 22457 df-ms 22458 df-tms 22459 df-cncf 23013 df-limc 23975 df-dv 23976 df-log 24648 df-squarenn 38195 df-pell1qr 38196 df-pell14qr 38197 df-pell1234qr 38198 df-pellfund 38199 df-rmx 38256 df-rmy 38257 |
This theorem is referenced by: jm2.27c 38363 |
Copyright terms: Public domain | W3C validator |