![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > jm3.1lem1 | Structured version Visualization version GIF version |
Description: Lemma for jm3.1 42342. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
Ref | Expression |
---|---|
jm3.1.a | ⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) |
jm3.1.b | ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) |
jm3.1.c | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
jm3.1.d | ⊢ (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) |
Ref | Expression |
---|---|
jm3.1lem1 | ⊢ (𝜑 → (𝐾↑𝑁) < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jm3.1.b | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) | |
2 | eluzelre 12837 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘2) → 𝐾 ∈ ℝ) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
4 | jm3.1.c | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
5 | 4 | nnnn0d 12536 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
6 | 3, 5 | reexpcld 14133 | . 2 ⊢ (𝜑 → (𝐾↑𝑁) ∈ ℝ) |
7 | 2z 12598 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
8 | uzid 12841 | . . . . . . 7 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
9 | 7, 8 | ax-mp 5 | . . . . . 6 ⊢ 2 ∈ (ℤ≥‘2) |
10 | uz2mulcl 12914 | . . . . . 6 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2)) → (2 · 𝐾) ∈ (ℤ≥‘2)) | |
11 | 9, 1, 10 | sylancr 586 | . . . . 5 ⊢ (𝜑 → (2 · 𝐾) ∈ (ℤ≥‘2)) |
12 | uz2m1nn 12911 | . . . . 5 ⊢ ((2 · 𝐾) ∈ (ℤ≥‘2) → ((2 · 𝐾) − 1) ∈ ℕ) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → ((2 · 𝐾) − 1) ∈ ℕ) |
14 | 13 | nnred 12231 | . . 3 ⊢ (𝜑 → ((2 · 𝐾) − 1) ∈ ℝ) |
15 | 14, 5 | reexpcld 14133 | . 2 ⊢ (𝜑 → (((2 · 𝐾) − 1)↑𝑁) ∈ ℝ) |
16 | jm3.1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) | |
17 | eluzelre 12837 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℝ) | |
18 | 16, 17 | syl 17 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
19 | uz2m1nn 12911 | . . . . . . 7 ⊢ (𝐾 ∈ (ℤ≥‘2) → (𝐾 − 1) ∈ ℕ) | |
20 | 1, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐾 − 1) ∈ ℕ) |
21 | 20 | nngt0d 12265 | . . . . 5 ⊢ (𝜑 → 0 < (𝐾 − 1)) |
22 | 2cn 12291 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
23 | 3 | recnd 11246 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
24 | mulcl 11196 | . . . . . . . 8 ⊢ ((2 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (2 · 𝐾) ∈ ℂ) | |
25 | 22, 23, 24 | sylancr 586 | . . . . . . 7 ⊢ (𝜑 → (2 · 𝐾) ∈ ℂ) |
26 | 1cnd 11213 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℂ) | |
27 | 25, 26, 23 | sub32d 11607 | . . . . . 6 ⊢ (𝜑 → (((2 · 𝐾) − 1) − 𝐾) = (((2 · 𝐾) − 𝐾) − 1)) |
28 | 23 | 2timesd 12459 | . . . . . . . 8 ⊢ (𝜑 → (2 · 𝐾) = (𝐾 + 𝐾)) |
29 | 23, 23, 28 | mvrladdd 11631 | . . . . . . 7 ⊢ (𝜑 → ((2 · 𝐾) − 𝐾) = 𝐾) |
30 | 29 | oveq1d 7420 | . . . . . 6 ⊢ (𝜑 → (((2 · 𝐾) − 𝐾) − 1) = (𝐾 − 1)) |
31 | 27, 30 | eqtrd 2766 | . . . . 5 ⊢ (𝜑 → (((2 · 𝐾) − 1) − 𝐾) = (𝐾 − 1)) |
32 | 21, 31 | breqtrrd 5169 | . . . 4 ⊢ (𝜑 → 0 < (((2 · 𝐾) − 1) − 𝐾)) |
33 | 3, 14 | posdifd 11805 | . . . 4 ⊢ (𝜑 → (𝐾 < ((2 · 𝐾) − 1) ↔ 0 < (((2 · 𝐾) − 1) − 𝐾))) |
34 | 32, 33 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐾 < ((2 · 𝐾) − 1)) |
35 | eluz2nn 12872 | . . . . . 6 ⊢ (𝐾 ∈ (ℤ≥‘2) → 𝐾 ∈ ℕ) | |
36 | 1, 35 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℕ) |
37 | 36 | nnrpd 13020 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℝ+) |
38 | 13 | nnrpd 13020 | . . . 4 ⊢ (𝜑 → ((2 · 𝐾) − 1) ∈ ℝ+) |
39 | rpexpmord 14138 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℝ+ ∧ ((2 · 𝐾) − 1) ∈ ℝ+) → (𝐾 < ((2 · 𝐾) − 1) ↔ (𝐾↑𝑁) < (((2 · 𝐾) − 1)↑𝑁))) | |
40 | 4, 37, 38, 39 | syl3anc 1368 | . . 3 ⊢ (𝜑 → (𝐾 < ((2 · 𝐾) − 1) ↔ (𝐾↑𝑁) < (((2 · 𝐾) − 1)↑𝑁))) |
41 | 34, 40 | mpbid 231 | . 2 ⊢ (𝜑 → (𝐾↑𝑁) < (((2 · 𝐾) − 1)↑𝑁)) |
42 | 4 | nnzd 12589 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
43 | 42 | peano2zd 12673 | . . . . 5 ⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) |
44 | frmy 42236 | . . . . . 6 ⊢ Yrm :((ℤ≥‘2) × ℤ)⟶ℤ | |
45 | 44 | fovcl 7533 | . . . . 5 ⊢ ((𝐾 ∈ (ℤ≥‘2) ∧ (𝑁 + 1) ∈ ℤ) → (𝐾 Yrm (𝑁 + 1)) ∈ ℤ) |
46 | 1, 43, 45 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐾 Yrm (𝑁 + 1)) ∈ ℤ) |
47 | 46 | zred 12670 | . . 3 ⊢ (𝜑 → (𝐾 Yrm (𝑁 + 1)) ∈ ℝ) |
48 | jm2.17a 42282 | . . . 4 ⊢ ((𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (((2 · 𝐾) − 1)↑𝑁) ≤ (𝐾 Yrm (𝑁 + 1))) | |
49 | 1, 5, 48 | syl2anc 583 | . . 3 ⊢ (𝜑 → (((2 · 𝐾) − 1)↑𝑁) ≤ (𝐾 Yrm (𝑁 + 1))) |
50 | jm3.1.d | . . 3 ⊢ (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) | |
51 | 15, 47, 18, 49, 50 | letrd 11375 | . 2 ⊢ (𝜑 → (((2 · 𝐾) − 1)↑𝑁) ≤ 𝐴) |
52 | 6, 15, 18, 41, 51 | ltletrd 11378 | 1 ⊢ (𝜑 → (𝐾↑𝑁) < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2098 class class class wbr 5141 ‘cfv 6537 (class class class)co 7405 ℂcc 11110 ℝcr 11111 0cc0 11112 1c1 11113 + caddc 11115 · cmul 11117 < clt 11252 ≤ cle 11253 − cmin 11448 ℕcn 12216 2c2 12271 ℕ0cn0 12476 ℤcz 12562 ℤ≥cuz 12826 ℝ+crp 12980 ↑cexp 14032 Yrm crmy 42222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7667 df-om 7853 df-1st 7974 df-2nd 7975 df-supp 8147 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-2o 8468 df-oadd 8471 df-omul 8472 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-acn 9939 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-xnn0 12549 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12981 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-ioo 13334 df-ioc 13335 df-ico 13336 df-icc 13337 df-fz 13491 df-fzo 13634 df-fl 13763 df-mod 13841 df-seq 13973 df-exp 14033 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15020 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-limsup 15421 df-clim 15438 df-rlim 15439 df-sum 15639 df-ef 16017 df-sin 16019 df-cos 16020 df-pi 16022 df-dvds 16205 df-gcd 16443 df-numer 16680 df-denom 16681 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-starv 17221 df-sca 17222 df-vsca 17223 df-ip 17224 df-tset 17225 df-ple 17226 df-ds 17228 df-unif 17229 df-hom 17230 df-cco 17231 df-rest 17377 df-topn 17378 df-0g 17396 df-gsum 17397 df-topgen 17398 df-pt 17399 df-prds 17402 df-xrs 17457 df-qtop 17462 df-imas 17463 df-xps 17465 df-mre 17539 df-mrc 17540 df-acs 17542 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18714 df-mulg 18996 df-cntz 19233 df-cmn 19702 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-fbas 21237 df-fg 21238 df-cnfld 21241 df-top 22751 df-topon 22768 df-topsp 22790 df-bases 22804 df-cld 22878 df-ntr 22879 df-cls 22880 df-nei 22957 df-lp 22995 df-perf 22996 df-cn 23086 df-cnp 23087 df-haus 23174 df-tx 23421 df-hmeo 23614 df-fil 23705 df-fm 23797 df-flim 23798 df-flf 23799 df-xms 24181 df-ms 24182 df-tms 24183 df-cncf 24753 df-limc 25750 df-dv 25751 df-log 26445 df-squarenn 42162 df-pell1qr 42163 df-pell14qr 42164 df-pell1234qr 42165 df-pellfund 42166 df-rmx 42223 df-rmy 42224 |
This theorem is referenced by: jm3.1lem2 42340 |
Copyright terms: Public domain | W3C validator |