| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > jm3.1lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for jm3.1 42993. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| Ref | Expression |
|---|---|
| jm3.1.a | ⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) |
| jm3.1.b | ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) |
| jm3.1.c | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| jm3.1.d | ⊢ (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) |
| Ref | Expression |
|---|---|
| jm3.1lem1 | ⊢ (𝜑 → (𝐾↑𝑁) < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jm3.1.b | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) | |
| 2 | eluzelre 12764 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘2) → 𝐾 ∈ ℝ) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 4 | jm3.1.c | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 5 | 4 | nnnn0d 12463 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 6 | 3, 5 | reexpcld 14088 | . 2 ⊢ (𝜑 → (𝐾↑𝑁) ∈ ℝ) |
| 7 | 2z 12525 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 8 | uzid 12768 | . . . . . . 7 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . 6 ⊢ 2 ∈ (ℤ≥‘2) |
| 10 | uz2mulcl 12845 | . . . . . 6 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2)) → (2 · 𝐾) ∈ (ℤ≥‘2)) | |
| 11 | 9, 1, 10 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (2 · 𝐾) ∈ (ℤ≥‘2)) |
| 12 | uz2m1nn 12842 | . . . . 5 ⊢ ((2 · 𝐾) ∈ (ℤ≥‘2) → ((2 · 𝐾) − 1) ∈ ℕ) | |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → ((2 · 𝐾) − 1) ∈ ℕ) |
| 14 | 13 | nnred 12161 | . . 3 ⊢ (𝜑 → ((2 · 𝐾) − 1) ∈ ℝ) |
| 15 | 14, 5 | reexpcld 14088 | . 2 ⊢ (𝜑 → (((2 · 𝐾) − 1)↑𝑁) ∈ ℝ) |
| 16 | jm3.1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) | |
| 17 | eluzelre 12764 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℝ) | |
| 18 | 16, 17 | syl 17 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 19 | uz2m1nn 12842 | . . . . . . 7 ⊢ (𝐾 ∈ (ℤ≥‘2) → (𝐾 − 1) ∈ ℕ) | |
| 20 | 1, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐾 − 1) ∈ ℕ) |
| 21 | 20 | nngt0d 12195 | . . . . 5 ⊢ (𝜑 → 0 < (𝐾 − 1)) |
| 22 | 2cn 12221 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
| 23 | 3 | recnd 11162 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 24 | mulcl 11112 | . . . . . . . 8 ⊢ ((2 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (2 · 𝐾) ∈ ℂ) | |
| 25 | 22, 23, 24 | sylancr 587 | . . . . . . 7 ⊢ (𝜑 → (2 · 𝐾) ∈ ℂ) |
| 26 | 1cnd 11129 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 27 | 25, 26, 23 | sub32d 11525 | . . . . . 6 ⊢ (𝜑 → (((2 · 𝐾) − 1) − 𝐾) = (((2 · 𝐾) − 𝐾) − 1)) |
| 28 | 23 | 2timesd 12385 | . . . . . . . 8 ⊢ (𝜑 → (2 · 𝐾) = (𝐾 + 𝐾)) |
| 29 | 23, 23, 28 | mvrladdd 11551 | . . . . . . 7 ⊢ (𝜑 → ((2 · 𝐾) − 𝐾) = 𝐾) |
| 30 | 29 | oveq1d 7368 | . . . . . 6 ⊢ (𝜑 → (((2 · 𝐾) − 𝐾) − 1) = (𝐾 − 1)) |
| 31 | 27, 30 | eqtrd 2764 | . . . . 5 ⊢ (𝜑 → (((2 · 𝐾) − 1) − 𝐾) = (𝐾 − 1)) |
| 32 | 21, 31 | breqtrrd 5123 | . . . 4 ⊢ (𝜑 → 0 < (((2 · 𝐾) − 1) − 𝐾)) |
| 33 | 3, 14 | posdifd 11725 | . . . 4 ⊢ (𝜑 → (𝐾 < ((2 · 𝐾) − 1) ↔ 0 < (((2 · 𝐾) − 1) − 𝐾))) |
| 34 | 32, 33 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐾 < ((2 · 𝐾) − 1)) |
| 35 | eluz2nn 12807 | . . . . . 6 ⊢ (𝐾 ∈ (ℤ≥‘2) → 𝐾 ∈ ℕ) | |
| 36 | 1, 35 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 37 | 36 | nnrpd 12953 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℝ+) |
| 38 | 13 | nnrpd 12953 | . . . 4 ⊢ (𝜑 → ((2 · 𝐾) − 1) ∈ ℝ+) |
| 39 | rpexpmord 14093 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℝ+ ∧ ((2 · 𝐾) − 1) ∈ ℝ+) → (𝐾 < ((2 · 𝐾) − 1) ↔ (𝐾↑𝑁) < (((2 · 𝐾) − 1)↑𝑁))) | |
| 40 | 4, 37, 38, 39 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐾 < ((2 · 𝐾) − 1) ↔ (𝐾↑𝑁) < (((2 · 𝐾) − 1)↑𝑁))) |
| 41 | 34, 40 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐾↑𝑁) < (((2 · 𝐾) − 1)↑𝑁)) |
| 42 | 4 | nnzd 12516 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 43 | 42 | peano2zd 12601 | . . . . 5 ⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) |
| 44 | frmy 42887 | . . . . . 6 ⊢ Yrm :((ℤ≥‘2) × ℤ)⟶ℤ | |
| 45 | 44 | fovcl 7481 | . . . . 5 ⊢ ((𝐾 ∈ (ℤ≥‘2) ∧ (𝑁 + 1) ∈ ℤ) → (𝐾 Yrm (𝑁 + 1)) ∈ ℤ) |
| 46 | 1, 43, 45 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐾 Yrm (𝑁 + 1)) ∈ ℤ) |
| 47 | 46 | zred 12598 | . . 3 ⊢ (𝜑 → (𝐾 Yrm (𝑁 + 1)) ∈ ℝ) |
| 48 | jm2.17a 42933 | . . . 4 ⊢ ((𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (((2 · 𝐾) − 1)↑𝑁) ≤ (𝐾 Yrm (𝑁 + 1))) | |
| 49 | 1, 5, 48 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((2 · 𝐾) − 1)↑𝑁) ≤ (𝐾 Yrm (𝑁 + 1))) |
| 50 | jm3.1.d | . . 3 ⊢ (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) | |
| 51 | 15, 47, 18, 49, 50 | letrd 11291 | . 2 ⊢ (𝜑 → (((2 · 𝐾) − 1)↑𝑁) ≤ 𝐴) |
| 52 | 6, 15, 18, 41, 51 | ltletrd 11294 | 1 ⊢ (𝜑 → (𝐾↑𝑁) < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 < clt 11168 ≤ cle 11169 − cmin 11365 ℕcn 12146 2c2 12201 ℕ0cn0 12402 ℤcz 12489 ℤ≥cuz 12753 ℝ+crp 12911 ↑cexp 13986 Yrm crmy 42874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-omul 8400 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-acn 9857 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-xnn0 12476 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ioc 13271 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-fl 13714 df-mod 13792 df-seq 13927 df-exp 13987 df-fac 14199 df-bc 14228 df-hash 14256 df-shft 14992 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-limsup 15396 df-clim 15413 df-rlim 15414 df-sum 15612 df-ef 15992 df-sin 15994 df-cos 15995 df-pi 15997 df-dvds 16182 df-gcd 16424 df-numer 16664 df-denom 16665 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-mulg 18965 df-cntz 19214 df-cmn 19679 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-lp 23039 df-perf 23040 df-cn 23130 df-cnp 23131 df-haus 23218 df-tx 23465 df-hmeo 23658 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-xms 24224 df-ms 24225 df-tms 24226 df-cncf 24787 df-limc 25783 df-dv 25784 df-log 26481 df-squarenn 42814 df-pell1qr 42815 df-pell14qr 42816 df-pell1234qr 42817 df-pellfund 42818 df-rmx 42875 df-rmy 42876 |
| This theorem is referenced by: jm3.1lem2 42991 |
| Copyright terms: Public domain | W3C validator |