![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > jm3.1lem1 | Structured version Visualization version GIF version |
Description: Lemma for jm3.1 42214. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
Ref | Expression |
---|---|
jm3.1.a | β’ (π β π΄ β (β€β₯β2)) |
jm3.1.b | β’ (π β πΎ β (β€β₯β2)) |
jm3.1.c | β’ (π β π β β) |
jm3.1.d | β’ (π β (πΎ Yrm (π + 1)) β€ π΄) |
Ref | Expression |
---|---|
jm3.1lem1 | β’ (π β (πΎβπ) < π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jm3.1.b | . . . 4 β’ (π β πΎ β (β€β₯β2)) | |
2 | eluzelre 12829 | . . . 4 β’ (πΎ β (β€β₯β2) β πΎ β β) | |
3 | 1, 2 | syl 17 | . . 3 β’ (π β πΎ β β) |
4 | jm3.1.c | . . . 4 β’ (π β π β β) | |
5 | 4 | nnnn0d 12528 | . . 3 β’ (π β π β β0) |
6 | 3, 5 | reexpcld 14124 | . 2 β’ (π β (πΎβπ) β β) |
7 | 2z 12590 | . . . . . . 7 β’ 2 β β€ | |
8 | uzid 12833 | . . . . . . 7 β’ (2 β β€ β 2 β (β€β₯β2)) | |
9 | 7, 8 | ax-mp 5 | . . . . . 6 β’ 2 β (β€β₯β2) |
10 | uz2mulcl 12906 | . . . . . 6 β’ ((2 β (β€β₯β2) β§ πΎ β (β€β₯β2)) β (2 Β· πΎ) β (β€β₯β2)) | |
11 | 9, 1, 10 | sylancr 586 | . . . . 5 β’ (π β (2 Β· πΎ) β (β€β₯β2)) |
12 | uz2m1nn 12903 | . . . . 5 β’ ((2 Β· πΎ) β (β€β₯β2) β ((2 Β· πΎ) β 1) β β) | |
13 | 11, 12 | syl 17 | . . . 4 β’ (π β ((2 Β· πΎ) β 1) β β) |
14 | 13 | nnred 12223 | . . 3 β’ (π β ((2 Β· πΎ) β 1) β β) |
15 | 14, 5 | reexpcld 14124 | . 2 β’ (π β (((2 Β· πΎ) β 1)βπ) β β) |
16 | jm3.1.a | . . 3 β’ (π β π΄ β (β€β₯β2)) | |
17 | eluzelre 12829 | . . 3 β’ (π΄ β (β€β₯β2) β π΄ β β) | |
18 | 16, 17 | syl 17 | . 2 β’ (π β π΄ β β) |
19 | uz2m1nn 12903 | . . . . . . 7 β’ (πΎ β (β€β₯β2) β (πΎ β 1) β β) | |
20 | 1, 19 | syl 17 | . . . . . 6 β’ (π β (πΎ β 1) β β) |
21 | 20 | nngt0d 12257 | . . . . 5 β’ (π β 0 < (πΎ β 1)) |
22 | 2cn 12283 | . . . . . . . 8 β’ 2 β β | |
23 | 3 | recnd 11238 | . . . . . . . 8 β’ (π β πΎ β β) |
24 | mulcl 11189 | . . . . . . . 8 β’ ((2 β β β§ πΎ β β) β (2 Β· πΎ) β β) | |
25 | 22, 23, 24 | sylancr 586 | . . . . . . 7 β’ (π β (2 Β· πΎ) β β) |
26 | 1cnd 11205 | . . . . . . 7 β’ (π β 1 β β) | |
27 | 25, 26, 23 | sub32d 11599 | . . . . . 6 β’ (π β (((2 Β· πΎ) β 1) β πΎ) = (((2 Β· πΎ) β πΎ) β 1)) |
28 | 23 | 2timesd 12451 | . . . . . . . 8 β’ (π β (2 Β· πΎ) = (πΎ + πΎ)) |
29 | 23, 23, 28 | mvrladdd 11623 | . . . . . . 7 β’ (π β ((2 Β· πΎ) β πΎ) = πΎ) |
30 | 29 | oveq1d 7416 | . . . . . 6 β’ (π β (((2 Β· πΎ) β πΎ) β 1) = (πΎ β 1)) |
31 | 27, 30 | eqtrd 2764 | . . . . 5 β’ (π β (((2 Β· πΎ) β 1) β πΎ) = (πΎ β 1)) |
32 | 21, 31 | breqtrrd 5166 | . . . 4 β’ (π β 0 < (((2 Β· πΎ) β 1) β πΎ)) |
33 | 3, 14 | posdifd 11797 | . . . 4 β’ (π β (πΎ < ((2 Β· πΎ) β 1) β 0 < (((2 Β· πΎ) β 1) β πΎ))) |
34 | 32, 33 | mpbird 257 | . . 3 β’ (π β πΎ < ((2 Β· πΎ) β 1)) |
35 | eluz2nn 12864 | . . . . . 6 β’ (πΎ β (β€β₯β2) β πΎ β β) | |
36 | 1, 35 | syl 17 | . . . . 5 β’ (π β πΎ β β) |
37 | 36 | nnrpd 13010 | . . . 4 β’ (π β πΎ β β+) |
38 | 13 | nnrpd 13010 | . . . 4 β’ (π β ((2 Β· πΎ) β 1) β β+) |
39 | rpexpmord 14129 | . . . 4 β’ ((π β β β§ πΎ β β+ β§ ((2 Β· πΎ) β 1) β β+) β (πΎ < ((2 Β· πΎ) β 1) β (πΎβπ) < (((2 Β· πΎ) β 1)βπ))) | |
40 | 4, 37, 38, 39 | syl3anc 1368 | . . 3 β’ (π β (πΎ < ((2 Β· πΎ) β 1) β (πΎβπ) < (((2 Β· πΎ) β 1)βπ))) |
41 | 34, 40 | mpbid 231 | . 2 β’ (π β (πΎβπ) < (((2 Β· πΎ) β 1)βπ)) |
42 | 4 | nnzd 12581 | . . . . . 6 β’ (π β π β β€) |
43 | 42 | peano2zd 12665 | . . . . 5 β’ (π β (π + 1) β β€) |
44 | frmy 42108 | . . . . . 6 β’ Yrm :((β€β₯β2) Γ β€)βΆβ€ | |
45 | 44 | fovcl 7529 | . . . . 5 β’ ((πΎ β (β€β₯β2) β§ (π + 1) β β€) β (πΎ Yrm (π + 1)) β β€) |
46 | 1, 43, 45 | syl2anc 583 | . . . 4 β’ (π β (πΎ Yrm (π + 1)) β β€) |
47 | 46 | zred 12662 | . . 3 β’ (π β (πΎ Yrm (π + 1)) β β) |
48 | jm2.17a 42154 | . . . 4 β’ ((πΎ β (β€β₯β2) β§ π β β0) β (((2 Β· πΎ) β 1)βπ) β€ (πΎ Yrm (π + 1))) | |
49 | 1, 5, 48 | syl2anc 583 | . . 3 β’ (π β (((2 Β· πΎ) β 1)βπ) β€ (πΎ Yrm (π + 1))) |
50 | jm3.1.d | . . 3 β’ (π β (πΎ Yrm (π + 1)) β€ π΄) | |
51 | 15, 47, 18, 49, 50 | letrd 11367 | . 2 β’ (π β (((2 Β· πΎ) β 1)βπ) β€ π΄) |
52 | 6, 15, 18, 41, 51 | ltletrd 11370 | 1 β’ (π β (πΎβπ) < π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β wcel 2098 class class class wbr 5138 βcfv 6533 (class class class)co 7401 βcc 11103 βcr 11104 0cc0 11105 1c1 11106 + caddc 11108 Β· cmul 11110 < clt 11244 β€ cle 11245 β cmin 11440 βcn 12208 2c2 12263 β0cn0 12468 β€cz 12554 β€β₯cuz 12818 β+crp 12970 βcexp 14023 Yrm crmy 42094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9631 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 ax-addf 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-oadd 8465 df-omul 8466 df-er 8698 df-map 8817 df-pm 8818 df-ixp 8887 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-fsupp 9357 df-fi 9401 df-sup 9432 df-inf 9433 df-oi 9500 df-card 9929 df-acn 9932 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-xnn0 12541 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ioc 13325 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-fac 14230 df-bc 14259 df-hash 14287 df-shft 15010 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15411 df-clim 15428 df-rlim 15429 df-sum 15629 df-ef 16007 df-sin 16009 df-cos 16010 df-pi 16012 df-dvds 16194 df-gcd 16432 df-numer 16669 df-denom 16670 df-struct 17078 df-sets 17095 df-slot 17113 df-ndx 17125 df-base 17143 df-ress 17172 df-plusg 17208 df-mulr 17209 df-starv 17210 df-sca 17211 df-vsca 17212 df-ip 17213 df-tset 17214 df-ple 17215 df-ds 17217 df-unif 17218 df-hom 17219 df-cco 17220 df-rest 17366 df-topn 17367 df-0g 17385 df-gsum 17386 df-topgen 17387 df-pt 17388 df-prds 17391 df-xrs 17446 df-qtop 17451 df-imas 17452 df-xps 17454 df-mre 17528 df-mrc 17529 df-acs 17531 df-mgm 18562 df-sgrp 18641 df-mnd 18657 df-submnd 18703 df-mulg 18985 df-cntz 19222 df-cmn 19691 df-psmet 21219 df-xmet 21220 df-met 21221 df-bl 21222 df-mopn 21223 df-fbas 21224 df-fg 21225 df-cnfld 21228 df-top 22717 df-topon 22734 df-topsp 22756 df-bases 22770 df-cld 22844 df-ntr 22845 df-cls 22846 df-nei 22923 df-lp 22961 df-perf 22962 df-cn 23052 df-cnp 23053 df-haus 23140 df-tx 23387 df-hmeo 23580 df-fil 23671 df-fm 23763 df-flim 23764 df-flf 23765 df-xms 24147 df-ms 24148 df-tms 24149 df-cncf 24719 df-limc 25716 df-dv 25717 df-log 26406 df-squarenn 42034 df-pell1qr 42035 df-pell14qr 42036 df-pell1234qr 42037 df-pellfund 42038 df-rmx 42095 df-rmy 42096 |
This theorem is referenced by: jm3.1lem2 42212 |
Copyright terms: Public domain | W3C validator |