Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm3.1lem1 Structured version   Visualization version   GIF version

Theorem jm3.1lem1 40451
Description: Lemma for jm3.1 40454. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Hypotheses
Ref Expression
jm3.1.a (𝜑𝐴 ∈ (ℤ‘2))
jm3.1.b (𝜑𝐾 ∈ (ℤ‘2))
jm3.1.c (𝜑𝑁 ∈ ℕ)
jm3.1.d (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴)
Assertion
Ref Expression
jm3.1lem1 (𝜑 → (𝐾𝑁) < 𝐴)

Proof of Theorem jm3.1lem1
StepHypRef Expression
1 jm3.1.b . . . 4 (𝜑𝐾 ∈ (ℤ‘2))
2 eluzelre 12347 . . . 4 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℝ)
31, 2syl 17 . . 3 (𝜑𝐾 ∈ ℝ)
4 jm3.1.c . . . 4 (𝜑𝑁 ∈ ℕ)
54nnnn0d 12048 . . 3 (𝜑𝑁 ∈ ℕ0)
63, 5reexpcld 13631 . 2 (𝜑 → (𝐾𝑁) ∈ ℝ)
7 2z 12107 . . . . . . 7 2 ∈ ℤ
8 uzid 12351 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
97, 8ax-mp 5 . . . . . 6 2 ∈ (ℤ‘2)
10 uz2mulcl 12420 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝐾 ∈ (ℤ‘2)) → (2 · 𝐾) ∈ (ℤ‘2))
119, 1, 10sylancr 590 . . . . 5 (𝜑 → (2 · 𝐾) ∈ (ℤ‘2))
12 uz2m1nn 12417 . . . . 5 ((2 · 𝐾) ∈ (ℤ‘2) → ((2 · 𝐾) − 1) ∈ ℕ)
1311, 12syl 17 . . . 4 (𝜑 → ((2 · 𝐾) − 1) ∈ ℕ)
1413nnred 11743 . . 3 (𝜑 → ((2 · 𝐾) − 1) ∈ ℝ)
1514, 5reexpcld 13631 . 2 (𝜑 → (((2 · 𝐾) − 1)↑𝑁) ∈ ℝ)
16 jm3.1.a . . 3 (𝜑𝐴 ∈ (ℤ‘2))
17 eluzelre 12347 . . 3 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
1816, 17syl 17 . 2 (𝜑𝐴 ∈ ℝ)
19 uz2m1nn 12417 . . . . . . 7 (𝐾 ∈ (ℤ‘2) → (𝐾 − 1) ∈ ℕ)
201, 19syl 17 . . . . . 6 (𝜑 → (𝐾 − 1) ∈ ℕ)
2120nngt0d 11777 . . . . 5 (𝜑 → 0 < (𝐾 − 1))
22 2cn 11803 . . . . . . . 8 2 ∈ ℂ
233recnd 10759 . . . . . . . 8 (𝜑𝐾 ∈ ℂ)
24 mulcl 10711 . . . . . . . 8 ((2 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (2 · 𝐾) ∈ ℂ)
2522, 23, 24sylancr 590 . . . . . . 7 (𝜑 → (2 · 𝐾) ∈ ℂ)
26 1cnd 10726 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
2725, 26, 23sub32d 11119 . . . . . 6 (𝜑 → (((2 · 𝐾) − 1) − 𝐾) = (((2 · 𝐾) − 𝐾) − 1))
28232timesd 11971 . . . . . . . 8 (𝜑 → (2 · 𝐾) = (𝐾 + 𝐾))
2923, 23, 28mvrladdd 11143 . . . . . . 7 (𝜑 → ((2 · 𝐾) − 𝐾) = 𝐾)
3029oveq1d 7197 . . . . . 6 (𝜑 → (((2 · 𝐾) − 𝐾) − 1) = (𝐾 − 1))
3127, 30eqtrd 2774 . . . . 5 (𝜑 → (((2 · 𝐾) − 1) − 𝐾) = (𝐾 − 1))
3221, 31breqtrrd 5068 . . . 4 (𝜑 → 0 < (((2 · 𝐾) − 1) − 𝐾))
333, 14posdifd 11317 . . . 4 (𝜑 → (𝐾 < ((2 · 𝐾) − 1) ↔ 0 < (((2 · 𝐾) − 1) − 𝐾)))
3432, 33mpbird 260 . . 3 (𝜑𝐾 < ((2 · 𝐾) − 1))
35 eluz2nn 12378 . . . . . 6 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
361, 35syl 17 . . . . 5 (𝜑𝐾 ∈ ℕ)
3736nnrpd 12524 . . . 4 (𝜑𝐾 ∈ ℝ+)
3813nnrpd 12524 . . . 4 (𝜑 → ((2 · 𝐾) − 1) ∈ ℝ+)
39 rpexpmord 13636 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℝ+ ∧ ((2 · 𝐾) − 1) ∈ ℝ+) → (𝐾 < ((2 · 𝐾) − 1) ↔ (𝐾𝑁) < (((2 · 𝐾) − 1)↑𝑁)))
404, 37, 38, 39syl3anc 1372 . . 3 (𝜑 → (𝐾 < ((2 · 𝐾) − 1) ↔ (𝐾𝑁) < (((2 · 𝐾) − 1)↑𝑁)))
4134, 40mpbid 235 . 2 (𝜑 → (𝐾𝑁) < (((2 · 𝐾) − 1)↑𝑁))
424nnzd 12179 . . . . . 6 (𝜑𝑁 ∈ ℤ)
4342peano2zd 12183 . . . . 5 (𝜑 → (𝑁 + 1) ∈ ℤ)
44 frmy 40348 . . . . . 6 Yrm :((ℤ‘2) × ℤ)⟶ℤ
4544fovcl 7306 . . . . 5 ((𝐾 ∈ (ℤ‘2) ∧ (𝑁 + 1) ∈ ℤ) → (𝐾 Yrm (𝑁 + 1)) ∈ ℤ)
461, 43, 45syl2anc 587 . . . 4 (𝜑 → (𝐾 Yrm (𝑁 + 1)) ∈ ℤ)
4746zred 12180 . . 3 (𝜑 → (𝐾 Yrm (𝑁 + 1)) ∈ ℝ)
48 jm2.17a 40394 . . . 4 ((𝐾 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (((2 · 𝐾) − 1)↑𝑁) ≤ (𝐾 Yrm (𝑁 + 1)))
491, 5, 48syl2anc 587 . . 3 (𝜑 → (((2 · 𝐾) − 1)↑𝑁) ≤ (𝐾 Yrm (𝑁 + 1)))
50 jm3.1.d . . 3 (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴)
5115, 47, 18, 49, 50letrd 10887 . 2 (𝜑 → (((2 · 𝐾) − 1)↑𝑁) ≤ 𝐴)
526, 15, 18, 41, 51ltletrd 10890 1 (𝜑 → (𝐾𝑁) < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wcel 2114   class class class wbr 5040  cfv 6349  (class class class)co 7182  cc 10625  cr 10626  0cc0 10627  1c1 10628   + caddc 10630   · cmul 10632   < clt 10765  cle 10766  cmin 10960  cn 11728  2c2 11783  0cn0 11988  cz 12074  cuz 12336  +crp 12484  cexp 13533   Yrm crmy 40335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-inf2 9189  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704  ax-pre-sup 10705  ax-addf 10706  ax-mulf 10707
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-iin 4894  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-se 5494  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-of 7437  df-om 7612  df-1st 7726  df-2nd 7727  df-supp 7869  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-1o 8143  df-2o 8144  df-oadd 8147  df-omul 8148  df-er 8332  df-map 8451  df-pm 8452  df-ixp 8520  df-en 8568  df-dom 8569  df-sdom 8570  df-fin 8571  df-fsupp 8919  df-fi 8960  df-sup 8991  df-inf 8992  df-oi 9059  df-card 9453  df-acn 9456  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-div 11388  df-nn 11729  df-2 11791  df-3 11792  df-4 11793  df-5 11794  df-6 11795  df-7 11796  df-8 11797  df-9 11798  df-n0 11989  df-xnn0 12061  df-z 12075  df-dec 12192  df-uz 12337  df-q 12443  df-rp 12485  df-xneg 12602  df-xadd 12603  df-xmul 12604  df-ioo 12837  df-ioc 12838  df-ico 12839  df-icc 12840  df-fz 12994  df-fzo 13137  df-fl 13265  df-mod 13341  df-seq 13473  df-exp 13534  df-fac 13738  df-bc 13767  df-hash 13795  df-shft 14528  df-cj 14560  df-re 14561  df-im 14562  df-sqrt 14696  df-abs 14697  df-limsup 14930  df-clim 14947  df-rlim 14948  df-sum 15148  df-ef 15525  df-sin 15527  df-cos 15528  df-pi 15530  df-dvds 15712  df-gcd 15950  df-numer 16187  df-denom 16188  df-struct 16600  df-ndx 16601  df-slot 16602  df-base 16604  df-sets 16605  df-ress 16606  df-plusg 16693  df-mulr 16694  df-starv 16695  df-sca 16696  df-vsca 16697  df-ip 16698  df-tset 16699  df-ple 16700  df-ds 16702  df-unif 16703  df-hom 16704  df-cco 16705  df-rest 16811  df-topn 16812  df-0g 16830  df-gsum 16831  df-topgen 16832  df-pt 16833  df-prds 16836  df-xrs 16890  df-qtop 16895  df-imas 16896  df-xps 16898  df-mre 16972  df-mrc 16973  df-acs 16975  df-mgm 17980  df-sgrp 18029  df-mnd 18040  df-submnd 18085  df-mulg 18355  df-cntz 18577  df-cmn 19038  df-psmet 20221  df-xmet 20222  df-met 20223  df-bl 20224  df-mopn 20225  df-fbas 20226  df-fg 20227  df-cnfld 20230  df-top 21657  df-topon 21674  df-topsp 21696  df-bases 21709  df-cld 21782  df-ntr 21783  df-cls 21784  df-nei 21861  df-lp 21899  df-perf 21900  df-cn 21990  df-cnp 21991  df-haus 22078  df-tx 22325  df-hmeo 22518  df-fil 22609  df-fm 22701  df-flim 22702  df-flf 22703  df-xms 23085  df-ms 23086  df-tms 23087  df-cncf 23642  df-limc 24630  df-dv 24631  df-log 25312  df-squarenn 40275  df-pell1qr 40276  df-pell14qr 40277  df-pell1234qr 40278  df-pellfund 40279  df-rmx 40336  df-rmy 40337
This theorem is referenced by:  jm3.1lem2  40452
  Copyright terms: Public domain W3C validator