Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm3.1lem1 Structured version   Visualization version   GIF version

Theorem jm3.1lem1 38365
Description: Lemma for jm3.1 38368. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Hypotheses
Ref Expression
jm3.1.a (𝜑𝐴 ∈ (ℤ‘2))
jm3.1.b (𝜑𝐾 ∈ (ℤ‘2))
jm3.1.c (𝜑𝑁 ∈ ℕ)
jm3.1.d (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴)
Assertion
Ref Expression
jm3.1lem1 (𝜑 → (𝐾𝑁) < 𝐴)

Proof of Theorem jm3.1lem1
StepHypRef Expression
1 jm3.1.b . . . 4 (𝜑𝐾 ∈ (ℤ‘2))
2 eluzelre 11941 . . . 4 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℝ)
31, 2syl 17 . . 3 (𝜑𝐾 ∈ ℝ)
4 jm3.1.c . . . 4 (𝜑𝑁 ∈ ℕ)
54nnnn0d 11640 . . 3 (𝜑𝑁 ∈ ℕ0)
63, 5reexpcld 13279 . 2 (𝜑 → (𝐾𝑁) ∈ ℝ)
7 2z 11699 . . . . . . 7 2 ∈ ℤ
8 uzid 11945 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
97, 8ax-mp 5 . . . . . 6 2 ∈ (ℤ‘2)
10 uz2mulcl 12011 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝐾 ∈ (ℤ‘2)) → (2 · 𝐾) ∈ (ℤ‘2))
119, 1, 10sylancr 582 . . . . 5 (𝜑 → (2 · 𝐾) ∈ (ℤ‘2))
12 uz2m1nn 12008 . . . . 5 ((2 · 𝐾) ∈ (ℤ‘2) → ((2 · 𝐾) − 1) ∈ ℕ)
1311, 12syl 17 . . . 4 (𝜑 → ((2 · 𝐾) − 1) ∈ ℕ)
1413nnred 11329 . . 3 (𝜑 → ((2 · 𝐾) − 1) ∈ ℝ)
1514, 5reexpcld 13279 . 2 (𝜑 → (((2 · 𝐾) − 1)↑𝑁) ∈ ℝ)
16 jm3.1.a . . 3 (𝜑𝐴 ∈ (ℤ‘2))
17 eluzelre 11941 . . 3 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
1816, 17syl 17 . 2 (𝜑𝐴 ∈ ℝ)
19 uz2m1nn 12008 . . . . . . 7 (𝐾 ∈ (ℤ‘2) → (𝐾 − 1) ∈ ℕ)
201, 19syl 17 . . . . . 6 (𝜑 → (𝐾 − 1) ∈ ℕ)
2120nngt0d 11362 . . . . 5 (𝜑 → 0 < (𝐾 − 1))
22 2cn 11388 . . . . . . . 8 2 ∈ ℂ
233recnd 10357 . . . . . . . 8 (𝜑𝐾 ∈ ℂ)
24 mulcl 10308 . . . . . . . 8 ((2 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (2 · 𝐾) ∈ ℂ)
2522, 23, 24sylancr 582 . . . . . . 7 (𝜑 → (2 · 𝐾) ∈ ℂ)
26 1cnd 10323 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
2725, 26, 23sub32d 10716 . . . . . 6 (𝜑 → (((2 · 𝐾) − 1) − 𝐾) = (((2 · 𝐾) − 𝐾) − 1))
28232timesd 11563 . . . . . . . . 9 (𝜑 → (2 · 𝐾) = (𝐾 + 𝐾))
2928oveq1d 6893 . . . . . . . 8 (𝜑 → ((2 · 𝐾) − 𝐾) = ((𝐾 + 𝐾) − 𝐾))
3023, 23pncand 10685 . . . . . . . 8 (𝜑 → ((𝐾 + 𝐾) − 𝐾) = 𝐾)
3129, 30eqtrd 2833 . . . . . . 7 (𝜑 → ((2 · 𝐾) − 𝐾) = 𝐾)
3231oveq1d 6893 . . . . . 6 (𝜑 → (((2 · 𝐾) − 𝐾) − 1) = (𝐾 − 1))
3327, 32eqtrd 2833 . . . . 5 (𝜑 → (((2 · 𝐾) − 1) − 𝐾) = (𝐾 − 1))
3421, 33breqtrrd 4871 . . . 4 (𝜑 → 0 < (((2 · 𝐾) − 1) − 𝐾))
353, 14posdifd 10906 . . . 4 (𝜑 → (𝐾 < ((2 · 𝐾) − 1) ↔ 0 < (((2 · 𝐾) − 1) − 𝐾)))
3634, 35mpbird 249 . . 3 (𝜑𝐾 < ((2 · 𝐾) − 1))
37 eluz2nn 11970 . . . . . 6 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
381, 37syl 17 . . . . 5 (𝜑𝐾 ∈ ℕ)
3938nnrpd 12115 . . . 4 (𝜑𝐾 ∈ ℝ+)
4013nnrpd 12115 . . . 4 (𝜑 → ((2 · 𝐾) − 1) ∈ ℝ+)
41 rpexpmord 38294 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℝ+ ∧ ((2 · 𝐾) − 1) ∈ ℝ+) → (𝐾 < ((2 · 𝐾) − 1) ↔ (𝐾𝑁) < (((2 · 𝐾) − 1)↑𝑁)))
424, 39, 40, 41syl3anc 1491 . . 3 (𝜑 → (𝐾 < ((2 · 𝐾) − 1) ↔ (𝐾𝑁) < (((2 · 𝐾) − 1)↑𝑁)))
4336, 42mpbid 224 . 2 (𝜑 → (𝐾𝑁) < (((2 · 𝐾) − 1)↑𝑁))
444nnzd 11771 . . . . . 6 (𝜑𝑁 ∈ ℤ)
4544peano2zd 11775 . . . . 5 (𝜑 → (𝑁 + 1) ∈ ℤ)
46 frmy 38260 . . . . . 6 Yrm :((ℤ‘2) × ℤ)⟶ℤ
4746fovcl 6999 . . . . 5 ((𝐾 ∈ (ℤ‘2) ∧ (𝑁 + 1) ∈ ℤ) → (𝐾 Yrm (𝑁 + 1)) ∈ ℤ)
481, 45, 47syl2anc 580 . . . 4 (𝜑 → (𝐾 Yrm (𝑁 + 1)) ∈ ℤ)
4948zred 11772 . . 3 (𝜑 → (𝐾 Yrm (𝑁 + 1)) ∈ ℝ)
50 jm2.17a 38308 . . . 4 ((𝐾 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (((2 · 𝐾) − 1)↑𝑁) ≤ (𝐾 Yrm (𝑁 + 1)))
511, 5, 50syl2anc 580 . . 3 (𝜑 → (((2 · 𝐾) − 1)↑𝑁) ≤ (𝐾 Yrm (𝑁 + 1)))
52 jm3.1.d . . 3 (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴)
5315, 49, 18, 51, 52letrd 10484 . 2 (𝜑 → (((2 · 𝐾) − 1)↑𝑁) ≤ 𝐴)
546, 15, 18, 43, 53ltletrd 10487 1 (𝜑 → (𝐾𝑁) < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wcel 2157   class class class wbr 4843  cfv 6101  (class class class)co 6878  cc 10222  cr 10223  0cc0 10224  1c1 10225   + caddc 10227   · cmul 10229   < clt 10363  cle 10364  cmin 10556  cn 11312  2c2 11368  0cn0 11580  cz 11666  cuz 11930  +crp 12074  cexp 13114   Yrm crmy 38247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302  ax-addf 10303  ax-mulf 10304
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-om 7300  df-1st 7401  df-2nd 7402  df-supp 7533  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-omul 7804  df-er 7982  df-map 8097  df-pm 8098  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fsupp 8518  df-fi 8559  df-sup 8590  df-inf 8591  df-oi 8657  df-card 9051  df-acn 9054  df-cda 9278  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-xnn0 11653  df-z 11667  df-dec 11784  df-uz 11931  df-q 12034  df-rp 12075  df-xneg 12193  df-xadd 12194  df-xmul 12195  df-ioo 12428  df-ioc 12429  df-ico 12430  df-icc 12431  df-fz 12581  df-fzo 12721  df-fl 12848  df-mod 12924  df-seq 13056  df-exp 13115  df-fac 13314  df-bc 13343  df-hash 13371  df-shft 14148  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-limsup 14543  df-clim 14560  df-rlim 14561  df-sum 14758  df-ef 15134  df-sin 15136  df-cos 15137  df-pi 15139  df-dvds 15320  df-gcd 15552  df-numer 15776  df-denom 15777  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-starv 16282  df-sca 16283  df-vsca 16284  df-ip 16285  df-tset 16286  df-ple 16287  df-ds 16289  df-unif 16290  df-hom 16291  df-cco 16292  df-rest 16398  df-topn 16399  df-0g 16417  df-gsum 16418  df-topgen 16419  df-pt 16420  df-prds 16423  df-xrs 16477  df-qtop 16482  df-imas 16483  df-xps 16485  df-mre 16561  df-mrc 16562  df-acs 16564  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-submnd 17651  df-mulg 17857  df-cntz 18062  df-cmn 18510  df-psmet 20060  df-xmet 20061  df-met 20062  df-bl 20063  df-mopn 20064  df-fbas 20065  df-fg 20066  df-cnfld 20069  df-top 21027  df-topon 21044  df-topsp 21066  df-bases 21079  df-cld 21152  df-ntr 21153  df-cls 21154  df-nei 21231  df-lp 21269  df-perf 21270  df-cn 21360  df-cnp 21361  df-haus 21448  df-tx 21694  df-hmeo 21887  df-fil 21978  df-fm 22070  df-flim 22071  df-flf 22072  df-xms 22453  df-ms 22454  df-tms 22455  df-cncf 23009  df-limc 23971  df-dv 23972  df-log 24644  df-squarenn 38187  df-pell1qr 38188  df-pell14qr 38189  df-pell1234qr 38190  df-pellfund 38191  df-rmx 38248  df-rmy 38249
This theorem is referenced by:  jm3.1lem2  38366
  Copyright terms: Public domain W3C validator