Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmxy1 | Structured version Visualization version GIF version |
Description: Value of the X and Y sequences at 1. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
Ref | Expression |
---|---|
rmxy1 | ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 1) = 𝐴 ∧ (𝐴 Yrm 1) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 12212 | . . . 4 ⊢ 1 ∈ ℤ | |
2 | rmxyval 40448 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 1 ∈ ℤ) → ((𝐴 Xrm 1) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 1))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑1)) | |
3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 1) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 1))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑1)) |
4 | rmbaserp 40452 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℝ+) | |
5 | 4 | rpcnd 12635 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℂ) |
6 | 5 | exp1d 13716 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑1) = (𝐴 + (√‘((𝐴↑2) − 1)))) |
7 | rmspecpos 40449 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℝ+) | |
8 | 7 | rpcnd 12635 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℂ) |
9 | 8 | sqrtcld 15006 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ ℂ) |
10 | 9 | mulid1d 10855 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((√‘((𝐴↑2) − 1)) · 1) = (√‘((𝐴↑2) − 1))) |
11 | 10 | eqcomd 2743 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) = ((√‘((𝐴↑2) − 1)) · 1)) |
12 | 11 | oveq2d 7234 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) = (𝐴 + ((√‘((𝐴↑2) − 1)) · 1))) |
13 | 3, 6, 12 | 3eqtrd 2781 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 1) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 1))) = (𝐴 + ((√‘((𝐴↑2) − 1)) · 1))) |
14 | rmspecsqrtnq 40439 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ)) | |
15 | nn0ssq 12558 | . . . 4 ⊢ ℕ0 ⊆ ℚ | |
16 | frmx 40446 | . . . . . 6 ⊢ Xrm :((ℤ≥‘2) × ℤ)⟶ℕ0 | |
17 | 16 | fovcl 7343 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 1 ∈ ℤ) → (𝐴 Xrm 1) ∈ ℕ0) |
18 | 1, 17 | mpan2 691 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm 1) ∈ ℕ0) |
19 | 15, 18 | sseldi 3904 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm 1) ∈ ℚ) |
20 | zssq 12557 | . . . 4 ⊢ ℤ ⊆ ℚ | |
21 | frmy 40447 | . . . . . 6 ⊢ Yrm :((ℤ≥‘2) × ℤ)⟶ℤ | |
22 | 21 | fovcl 7343 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 1 ∈ ℤ) → (𝐴 Yrm 1) ∈ ℤ) |
23 | 1, 22 | mpan2 691 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm 1) ∈ ℤ) |
24 | 20, 23 | sseldi 3904 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm 1) ∈ ℚ) |
25 | eluzelz 12453 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℤ) | |
26 | zq 12555 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
27 | 25, 26 | syl 17 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℚ) |
28 | 20, 1 | sselii 3902 | . . . 4 ⊢ 1 ∈ ℚ |
29 | 28 | a1i 11 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 ∈ ℚ) |
30 | qirropth 40441 | . . 3 ⊢ (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ ((𝐴 Xrm 1) ∈ ℚ ∧ (𝐴 Yrm 1) ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 1 ∈ ℚ)) → (((𝐴 Xrm 1) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 1))) = (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)) ↔ ((𝐴 Xrm 1) = 𝐴 ∧ (𝐴 Yrm 1) = 1))) | |
31 | 14, 19, 24, 27, 29, 30 | syl122anc 1381 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → (((𝐴 Xrm 1) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 1))) = (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)) ↔ ((𝐴 Xrm 1) = 𝐴 ∧ (𝐴 Yrm 1) = 1))) |
32 | 13, 31 | mpbid 235 | 1 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 1) = 𝐴 ∧ (𝐴 Yrm 1) = 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∖ cdif 3868 ‘cfv 6385 (class class class)co 7218 ℂcc 10732 1c1 10735 + caddc 10737 · cmul 10739 − cmin 11067 2c2 11890 ℕ0cn0 12095 ℤcz 12181 ℤ≥cuz 12443 ℚcq 12549 ↑cexp 13640 √csqrt 14801 Xrm crmx 40433 Yrm crmy 40434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5184 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 ax-inf2 9261 ax-cnex 10790 ax-resscn 10791 ax-1cn 10792 ax-icn 10793 ax-addcl 10794 ax-addrcl 10795 ax-mulcl 10796 ax-mulrcl 10797 ax-mulcom 10798 ax-addass 10799 ax-mulass 10800 ax-distr 10801 ax-i2m1 10802 ax-1ne0 10803 ax-1rid 10804 ax-rnegex 10805 ax-rrecex 10806 ax-cnre 10807 ax-pre-lttri 10808 ax-pre-lttrn 10809 ax-pre-ltadd 10810 ax-pre-mulgt0 10811 ax-pre-sup 10812 ax-addf 10813 ax-mulf 10814 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3415 df-sbc 3700 df-csb 3817 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-pss 3890 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-tp 4551 df-op 4553 df-uni 4825 df-int 4865 df-iun 4911 df-iin 4912 df-br 5059 df-opab 5121 df-mpt 5141 df-tr 5167 df-id 5460 df-eprel 5465 df-po 5473 df-so 5474 df-fr 5514 df-se 5515 df-we 5516 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-pred 6165 df-ord 6221 df-on 6222 df-lim 6223 df-suc 6224 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-f1 6390 df-fo 6391 df-f1o 6392 df-fv 6393 df-isom 6394 df-riota 7175 df-ov 7221 df-oprab 7222 df-mpo 7223 df-of 7474 df-om 7650 df-1st 7766 df-2nd 7767 df-supp 7909 df-wrecs 8052 df-recs 8113 df-rdg 8151 df-1o 8207 df-2o 8208 df-oadd 8211 df-omul 8212 df-er 8396 df-map 8515 df-pm 8516 df-ixp 8584 df-en 8632 df-dom 8633 df-sdom 8634 df-fin 8635 df-fsupp 8991 df-fi 9032 df-sup 9063 df-inf 9064 df-oi 9131 df-card 9560 df-acn 9563 df-pnf 10874 df-mnf 10875 df-xr 10876 df-ltxr 10877 df-le 10878 df-sub 11069 df-neg 11070 df-div 11495 df-nn 11836 df-2 11898 df-3 11899 df-4 11900 df-5 11901 df-6 11902 df-7 11903 df-8 11904 df-9 11905 df-n0 12096 df-xnn0 12168 df-z 12182 df-dec 12299 df-uz 12444 df-q 12550 df-rp 12592 df-xneg 12709 df-xadd 12710 df-xmul 12711 df-ioo 12944 df-ioc 12945 df-ico 12946 df-icc 12947 df-fz 13101 df-fzo 13244 df-fl 13372 df-mod 13448 df-seq 13580 df-exp 13641 df-fac 13845 df-bc 13874 df-hash 13902 df-shft 14635 df-cj 14667 df-re 14668 df-im 14669 df-sqrt 14803 df-abs 14804 df-limsup 15037 df-clim 15054 df-rlim 15055 df-sum 15255 df-ef 15634 df-sin 15636 df-cos 15637 df-pi 15639 df-dvds 15821 df-gcd 16059 df-numer 16296 df-denom 16297 df-struct 16705 df-sets 16722 df-slot 16740 df-ndx 16750 df-base 16766 df-ress 16790 df-plusg 16820 df-mulr 16821 df-starv 16822 df-sca 16823 df-vsca 16824 df-ip 16825 df-tset 16826 df-ple 16827 df-ds 16829 df-unif 16830 df-hom 16831 df-cco 16832 df-rest 16932 df-topn 16933 df-0g 16951 df-gsum 16952 df-topgen 16953 df-pt 16954 df-prds 16957 df-xrs 17012 df-qtop 17017 df-imas 17018 df-xps 17020 df-mre 17094 df-mrc 17095 df-acs 17097 df-mgm 18119 df-sgrp 18168 df-mnd 18179 df-submnd 18224 df-mulg 18494 df-cntz 18716 df-cmn 19177 df-psmet 20360 df-xmet 20361 df-met 20362 df-bl 20363 df-mopn 20364 df-fbas 20365 df-fg 20366 df-cnfld 20369 df-top 21796 df-topon 21813 df-topsp 21835 df-bases 21848 df-cld 21921 df-ntr 21922 df-cls 21923 df-nei 22000 df-lp 22038 df-perf 22039 df-cn 22129 df-cnp 22130 df-haus 22217 df-tx 22464 df-hmeo 22657 df-fil 22748 df-fm 22840 df-flim 22841 df-flf 22842 df-xms 23223 df-ms 23224 df-tms 23225 df-cncf 23780 df-limc 24768 df-dv 24769 df-log 25450 df-squarenn 40374 df-pell1qr 40375 df-pell14qr 40376 df-pell1234qr 40377 df-pellfund 40378 df-rmx 40435 df-rmy 40436 |
This theorem is referenced by: rmx1 40459 rmy1 40463 |
Copyright terms: Public domain | W3C validator |