Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > jm3.1 | Structured version Visualization version GIF version |
Description: Diophantine expression for exponentiation. Lemma 3.1 of [JonesMatijasevic] p. 698. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
Ref | Expression |
---|---|
jm3.1 | ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) → (𝐾↑𝑁) = (((𝐴 Xrm 𝑁) − ((𝐴 − 𝐾) · (𝐴 Yrm 𝑁))) mod ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . . 3 ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) → 𝐴 ∈ (ℤ≥‘2)) | |
2 | simpl2 1191 | . . 3 ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) → 𝐾 ∈ (ℤ≥‘2)) | |
3 | simpl3 1192 | . . 3 ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) → 𝑁 ∈ ℕ) | |
4 | simpr 485 | . . 3 ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) | |
5 | 1, 2, 3, 4 | jm3.1lem2 40826 | . 2 ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) → (𝐾↑𝑁) < ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1)) |
6 | eluzge2nn0 12615 | . . . . 5 ⊢ (𝐾 ∈ (ℤ≥‘2) → 𝐾 ∈ ℕ0) | |
7 | 6 | 3ad2ant2 1133 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℕ0) |
8 | 7 | adantr 481 | . . 3 ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) → 𝐾 ∈ ℕ0) |
9 | 3 | nnnn0d 12281 | . . 3 ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) → 𝑁 ∈ ℕ0) |
10 | jm2.18 40796 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴 − 𝐾) · (𝐴 Yrm 𝑁))) − (𝐾↑𝑁))) | |
11 | 1, 8, 9, 10 | syl3anc 1370 | . 2 ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴 − 𝐾) · (𝐴 Yrm 𝑁))) − (𝐾↑𝑁))) |
12 | simp1 1135 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ (ℤ≥‘2)) | |
13 | nnz 12330 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
14 | 13 | 3ad2ant3 1134 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ) |
15 | frmx 40721 | . . . . . . . 8 ⊢ Xrm :((ℤ≥‘2) × ℤ)⟶ℕ0 | |
16 | 15 | fovcl 7393 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0) |
17 | 12, 14, 16 | syl2anc 584 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℕ0) |
18 | 17 | nn0zd 12412 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℤ) |
19 | eluzelz 12580 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℤ) | |
20 | eluzelz 12580 | . . . . . . . 8 ⊢ (𝐾 ∈ (ℤ≥‘2) → 𝐾 ∈ ℤ) | |
21 | zsubcl 12350 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐴 − 𝐾) ∈ ℤ) | |
22 | 19, 20, 21 | syl2an 596 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2)) → (𝐴 − 𝐾) ∈ ℤ) |
23 | 22 | 3adant3 1131 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 − 𝐾) ∈ ℤ) |
24 | frmy 40722 | . . . . . . . 8 ⊢ Yrm :((ℤ≥‘2) × ℤ)⟶ℤ | |
25 | 24 | fovcl 7393 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ) |
26 | 12, 14, 25 | syl2anc 584 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℤ) |
27 | 23, 26 | zmulcld 12420 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 − 𝐾) · (𝐴 Yrm 𝑁)) ∈ ℤ) |
28 | 18, 27 | zsubcld 12419 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Xrm 𝑁) − ((𝐴 − 𝐾) · (𝐴 Yrm 𝑁))) ∈ ℤ) |
29 | 28 | adantr 481 | . . 3 ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) → ((𝐴 Xrm 𝑁) − ((𝐴 − 𝐾) · (𝐴 Yrm 𝑁))) ∈ ℤ) |
30 | 1, 2, 3, 4 | jm3.1lem3 40827 | . . 3 ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℕ) |
31 | nnnn0 12228 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
32 | 31 | 3ad2ant3 1134 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0) |
33 | 7, 32 | nn0expcld 13949 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (𝐾↑𝑁) ∈ ℕ0) |
34 | 33 | adantr 481 | . . 3 ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) → (𝐾↑𝑁) ∈ ℕ0) |
35 | divalgmodcl 16104 | . . 3 ⊢ ((((𝐴 Xrm 𝑁) − ((𝐴 − 𝐾) · (𝐴 Yrm 𝑁))) ∈ ℤ ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℕ ∧ (𝐾↑𝑁) ∈ ℕ0) → ((𝐾↑𝑁) = (((𝐴 Xrm 𝑁) − ((𝐴 − 𝐾) · (𝐴 Yrm 𝑁))) mod ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1)) ↔ ((𝐾↑𝑁) < ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴 − 𝐾) · (𝐴 Yrm 𝑁))) − (𝐾↑𝑁))))) | |
36 | 29, 30, 34, 35 | syl3anc 1370 | . 2 ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) → ((𝐾↑𝑁) = (((𝐴 Xrm 𝑁) − ((𝐴 − 𝐾) · (𝐴 Yrm 𝑁))) mod ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1)) ↔ ((𝐾↑𝑁) < ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴 − 𝐾) · (𝐴 Yrm 𝑁))) − (𝐾↑𝑁))))) |
37 | 5, 11, 36 | mpbir2and 710 | 1 ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) → (𝐾↑𝑁) = (((𝐴 Xrm 𝑁) − ((𝐴 − 𝐾) · (𝐴 Yrm 𝑁))) mod ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6427 (class class class)co 7268 1c1 10860 + caddc 10862 · cmul 10864 < clt 10997 ≤ cle 10998 − cmin 11193 ℕcn 11961 2c2 12016 ℕ0cn0 12221 ℤcz 12307 ℤ≥cuz 12570 mod cmo 13577 ↑cexp 13770 ∥ cdvds 15951 Xrm crmx 40708 Yrm crmy 40709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-inf2 9387 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 ax-pre-sup 10937 ax-addf 10938 ax-mulf 10939 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-tp 4567 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-iin 4928 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-se 5541 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-isom 6436 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-om 7704 df-1st 7821 df-2nd 7822 df-supp 7966 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-1o 8285 df-2o 8286 df-oadd 8289 df-omul 8290 df-er 8486 df-map 8605 df-pm 8606 df-ixp 8674 df-en 8722 df-dom 8723 df-sdom 8724 df-fin 8725 df-fsupp 9117 df-fi 9158 df-sup 9189 df-inf 9190 df-oi 9257 df-card 9685 df-acn 9688 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-div 11621 df-nn 11962 df-2 12024 df-3 12025 df-4 12026 df-5 12027 df-6 12028 df-7 12029 df-8 12030 df-9 12031 df-n0 12222 df-xnn0 12294 df-z 12308 df-dec 12426 df-uz 12571 df-q 12677 df-rp 12719 df-xneg 12836 df-xadd 12837 df-xmul 12838 df-ioo 13071 df-ioc 13072 df-ico 13073 df-icc 13074 df-fz 13228 df-fzo 13371 df-fl 13500 df-mod 13578 df-seq 13710 df-exp 13771 df-fac 13976 df-bc 14005 df-hash 14033 df-shft 14766 df-cj 14798 df-re 14799 df-im 14800 df-sqrt 14934 df-abs 14935 df-limsup 15168 df-clim 15185 df-rlim 15186 df-sum 15386 df-ef 15765 df-sin 15767 df-cos 15768 df-pi 15770 df-dvds 15952 df-gcd 16190 df-numer 16427 df-denom 16428 df-struct 16836 df-sets 16853 df-slot 16871 df-ndx 16883 df-base 16901 df-ress 16930 df-plusg 16963 df-mulr 16964 df-starv 16965 df-sca 16966 df-vsca 16967 df-ip 16968 df-tset 16969 df-ple 16970 df-ds 16972 df-unif 16973 df-hom 16974 df-cco 16975 df-rest 17121 df-topn 17122 df-0g 17140 df-gsum 17141 df-topgen 17142 df-pt 17143 df-prds 17146 df-xrs 17201 df-qtop 17206 df-imas 17207 df-xps 17209 df-mre 17283 df-mrc 17284 df-acs 17286 df-mgm 18314 df-sgrp 18363 df-mnd 18374 df-submnd 18419 df-mulg 18689 df-cntz 18911 df-cmn 19376 df-psmet 20577 df-xmet 20578 df-met 20579 df-bl 20580 df-mopn 20581 df-fbas 20582 df-fg 20583 df-cnfld 20586 df-top 22031 df-topon 22048 df-topsp 22070 df-bases 22084 df-cld 22158 df-ntr 22159 df-cls 22160 df-nei 22237 df-lp 22275 df-perf 22276 df-cn 22366 df-cnp 22367 df-haus 22454 df-tx 22701 df-hmeo 22894 df-fil 22985 df-fm 23077 df-flim 23078 df-flf 23079 df-xms 23461 df-ms 23462 df-tms 23463 df-cncf 24029 df-limc 25018 df-dv 25019 df-log 25700 df-squarenn 40649 df-pell1qr 40650 df-pell14qr 40651 df-pell1234qr 40652 df-pellfund 40653 df-rmx 40710 df-rmy 40711 |
This theorem is referenced by: expdiophlem1 40829 |
Copyright terms: Public domain | W3C validator |