Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxm1 Structured version   Visualization version   GIF version

Theorem rmxm1 39875
Description: Subtraction of 1 formula for X sequence. Part 1 of equation 2.10 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 14-Oct-2014.)
Assertion
Ref Expression
rmxm1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 − 1)) = ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))))

Proof of Theorem rmxm1
StepHypRef Expression
1 neg1z 12006 . . . 4 -1 ∈ ℤ
2 rmxadd 39868 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ -1 ∈ ℤ) → (𝐴 Xrm (𝑁 + -1)) = (((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)))))
31, 2mp3an3 1447 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + -1)) = (((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)))))
4 1z 12000 . . . . . . . . 9 1 ∈ ℤ
5 rmxneg 39865 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 1 ∈ ℤ) → (𝐴 Xrm -1) = (𝐴 Xrm 1))
64, 5mpan2 690 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm -1) = (𝐴 Xrm 1))
7 rmx1 39867 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm 1) = 𝐴)
86, 7eqtrd 2833 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm -1) = 𝐴)
98adantr 484 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm -1) = 𝐴)
109oveq2d 7151 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) = ((𝐴 Xrm 𝑁) · 𝐴))
11 frmx 39854 . . . . . . . 8 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
1211fovcl 7258 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
1312nn0cnd 11945 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℂ)
14 eluzelcn 12243 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
1514adantr 484 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℂ)
1613, 15mulcomd 10651 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · 𝐴) = (𝐴 · (𝐴 Xrm 𝑁)))
1710, 16eqtrd 2833 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) = (𝐴 · (𝐴 Xrm 𝑁)))
18 rmyneg 39869 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 1 ∈ ℤ) → (𝐴 Yrm -1) = -(𝐴 Yrm 1))
194, 18mpan2 690 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm -1) = -(𝐴 Yrm 1))
20 rmy1 39871 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
2120negeqd 10869 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → -(𝐴 Yrm 1) = -1)
2219, 21eqtrd 2833 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm -1) = -1)
2322oveq2d 7151 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)) = ((𝐴 Yrm 𝑁) · -1))
2423adantr 484 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)) = ((𝐴 Yrm 𝑁) · -1))
25 frmy 39855 . . . . . . . . . . 11 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2625fovcl 7258 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
2726zcnd 12076 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℂ)
28 ax-1cn 10584 . . . . . . . . 9 1 ∈ ℂ
29 mulneg2 11066 . . . . . . . . 9 (((𝐴 Yrm 𝑁) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 Yrm 𝑁) · -1) = -((𝐴 Yrm 𝑁) · 1))
3027, 28, 29sylancl 589 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · -1) = -((𝐴 Yrm 𝑁) · 1))
3127mulid1d 10647 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · 1) = (𝐴 Yrm 𝑁))
3231negeqd 10869 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → -((𝐴 Yrm 𝑁) · 1) = -(𝐴 Yrm 𝑁))
3330, 32eqtrd 2833 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · -1) = -(𝐴 Yrm 𝑁))
3424, 33eqtrd 2833 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)) = -(𝐴 Yrm 𝑁))
3534oveq2d 7151 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1))) = (((𝐴↑2) − 1) · -(𝐴 Yrm 𝑁)))
36 rmspecnonsq 39848 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
3736eldifad 3893 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℕ)
3837nncnd 11641 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℂ)
3938adantr 484 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴↑2) − 1) ∈ ℂ)
4039, 27mulneg2d 11083 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · -(𝐴 Yrm 𝑁)) = -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))
4135, 40eqtrd 2833 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1))) = -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))
4217, 41oveq12d 7153 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)))) = ((𝐴 · (𝐴 Xrm 𝑁)) + -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))))
433, 42eqtrd 2833 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + -1)) = ((𝐴 · (𝐴 Xrm 𝑁)) + -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))))
44 zcn 11974 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
4544adantl 485 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
46 negsub 10923 . . . 4 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 + -1) = (𝑁 − 1))
4745, 28, 46sylancl 589 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝑁 + -1) = (𝑁 − 1))
4847oveq2d 7151 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + -1)) = (𝐴 Xrm (𝑁 − 1)))
4915, 13mulcld 10650 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 · (𝐴 Xrm 𝑁)) ∈ ℂ)
5039, 27mulcld 10650 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)) ∈ ℂ)
5149, 50negsubd 10992 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 · (𝐴 Xrm 𝑁)) + -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))) = ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))))
5243, 48, 513eqtr3d 2841 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 − 1)) = ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  cc 10524  1c1 10527   + caddc 10529   · cmul 10531  cmin 10859  -cneg 10860  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  cexp 13425  NNcsquarenn 39777   Xrm crmx 39841   Yrm crmy 39842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-dvds 15600  df-gcd 15834  df-numer 16065  df-denom 16066  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148  df-squarenn 39782  df-pell1qr 39783  df-pell14qr 39784  df-pell1234qr 39785  df-pellfund 39786  df-rmx 39843  df-rmy 39844
This theorem is referenced by:  rmxluc  39877
  Copyright terms: Public domain W3C validator