Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmxm1 | Structured version Visualization version GIF version |
Description: Subtraction of 1 formula for X sequence. Part 1 of equation 2.10 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 14-Oct-2014.) |
Ref | Expression |
---|---|
rmxm1 | ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 − 1)) = ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1z 12102 | . . . 4 ⊢ -1 ∈ ℤ | |
2 | rmxadd 40344 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ -1 ∈ ℤ) → (𝐴 Xrm (𝑁 + -1)) = (((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1))))) | |
3 | 1, 2 | mp3an3 1451 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + -1)) = (((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1))))) |
4 | 1z 12096 | . . . . . . . . 9 ⊢ 1 ∈ ℤ | |
5 | rmxneg 40341 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 1 ∈ ℤ) → (𝐴 Xrm -1) = (𝐴 Xrm 1)) | |
6 | 4, 5 | mpan2 691 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm -1) = (𝐴 Xrm 1)) |
7 | rmx1 40343 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm 1) = 𝐴) | |
8 | 6, 7 | eqtrd 2774 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm -1) = 𝐴) |
9 | 8 | adantr 484 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm -1) = 𝐴) |
10 | 9 | oveq2d 7189 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) = ((𝐴 Xrm 𝑁) · 𝐴)) |
11 | frmx 40330 | . . . . . . . 8 ⊢ Xrm :((ℤ≥‘2) × ℤ)⟶ℕ0 | |
12 | 11 | fovcl 7297 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0) |
13 | 12 | nn0cnd 12041 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℂ) |
14 | eluzelcn 12339 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℂ) | |
15 | 14 | adantr 484 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℂ) |
16 | 13, 15 | mulcomd 10743 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · 𝐴) = (𝐴 · (𝐴 Xrm 𝑁))) |
17 | 10, 16 | eqtrd 2774 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) = (𝐴 · (𝐴 Xrm 𝑁))) |
18 | rmyneg 40345 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 1 ∈ ℤ) → (𝐴 Yrm -1) = -(𝐴 Yrm 1)) | |
19 | 4, 18 | mpan2 691 | . . . . . . . . . 10 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm -1) = -(𝐴 Yrm 1)) |
20 | rmy1 40347 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm 1) = 1) | |
21 | 20 | negeqd 10961 | . . . . . . . . . 10 ⊢ (𝐴 ∈ (ℤ≥‘2) → -(𝐴 Yrm 1) = -1) |
22 | 19, 21 | eqtrd 2774 | . . . . . . . . 9 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm -1) = -1) |
23 | 22 | oveq2d 7189 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)) = ((𝐴 Yrm 𝑁) · -1)) |
24 | 23 | adantr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)) = ((𝐴 Yrm 𝑁) · -1)) |
25 | frmy 40331 | . . . . . . . . . . 11 ⊢ Yrm :((ℤ≥‘2) × ℤ)⟶ℤ | |
26 | 25 | fovcl 7297 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ) |
27 | 26 | zcnd 12172 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℂ) |
28 | ax-1cn 10676 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
29 | mulneg2 11158 | . . . . . . . . 9 ⊢ (((𝐴 Yrm 𝑁) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 Yrm 𝑁) · -1) = -((𝐴 Yrm 𝑁) · 1)) | |
30 | 27, 28, 29 | sylancl 589 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · -1) = -((𝐴 Yrm 𝑁) · 1)) |
31 | 27 | mulid1d 10739 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · 1) = (𝐴 Yrm 𝑁)) |
32 | 31 | negeqd 10961 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → -((𝐴 Yrm 𝑁) · 1) = -(𝐴 Yrm 𝑁)) |
33 | 30, 32 | eqtrd 2774 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · -1) = -(𝐴 Yrm 𝑁)) |
34 | 24, 33 | eqtrd 2774 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)) = -(𝐴 Yrm 𝑁)) |
35 | 34 | oveq2d 7189 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1))) = (((𝐴↑2) − 1) · -(𝐴 Yrm 𝑁))) |
36 | rmspecnonsq 40324 | . . . . . . . . 9 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN)) | |
37 | 36 | eldifad 3856 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℕ) |
38 | 37 | nncnd 11735 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℂ) |
39 | 38 | adantr 484 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴↑2) − 1) ∈ ℂ) |
40 | 39, 27 | mulneg2d 11175 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · -(𝐴 Yrm 𝑁)) = -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))) |
41 | 35, 40 | eqtrd 2774 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1))) = -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))) |
42 | 17, 41 | oveq12d 7191 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)))) = ((𝐴 · (𝐴 Xrm 𝑁)) + -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))) |
43 | 3, 42 | eqtrd 2774 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + -1)) = ((𝐴 · (𝐴 Xrm 𝑁)) + -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))) |
44 | zcn 12070 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
45 | 44 | adantl 485 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ) |
46 | negsub 11015 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 + -1) = (𝑁 − 1)) | |
47 | 45, 28, 46 | sylancl 589 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝑁 + -1) = (𝑁 − 1)) |
48 | 47 | oveq2d 7189 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + -1)) = (𝐴 Xrm (𝑁 − 1))) |
49 | 15, 13 | mulcld 10742 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 · (𝐴 Xrm 𝑁)) ∈ ℂ) |
50 | 39, 27 | mulcld 10742 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)) ∈ ℂ) |
51 | 49, 50 | negsubd 11084 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 · (𝐴 Xrm 𝑁)) + -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))) = ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))) |
52 | 43, 48, 51 | 3eqtr3d 2782 | 1 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 − 1)) = ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ‘cfv 6340 (class class class)co 7173 ℂcc 10616 1c1 10619 + caddc 10621 · cmul 10623 − cmin 10951 -cneg 10952 ℕcn 11719 2c2 11774 ℕ0cn0 11979 ℤcz 12065 ℤ≥cuz 12327 ↑cexp 13524 ◻NNcsquarenn 40253 Xrm crmx 40317 Yrm crmy 40318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 ax-inf2 9180 ax-cnex 10674 ax-resscn 10675 ax-1cn 10676 ax-icn 10677 ax-addcl 10678 ax-addrcl 10679 ax-mulcl 10680 ax-mulrcl 10681 ax-mulcom 10682 ax-addass 10683 ax-mulass 10684 ax-distr 10685 ax-i2m1 10686 ax-1ne0 10687 ax-1rid 10688 ax-rnegex 10689 ax-rrecex 10690 ax-cnre 10691 ax-pre-lttri 10692 ax-pre-lttrn 10693 ax-pre-ltadd 10694 ax-pre-mulgt0 10695 ax-pre-sup 10696 ax-addf 10697 ax-mulf 10698 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-int 4838 df-iun 4884 df-iin 4885 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-se 5485 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7130 df-ov 7176 df-oprab 7177 df-mpo 7178 df-of 7428 df-om 7603 df-1st 7717 df-2nd 7718 df-supp 7860 df-wrecs 7979 df-recs 8040 df-rdg 8078 df-1o 8134 df-2o 8135 df-oadd 8138 df-omul 8139 df-er 8323 df-map 8442 df-pm 8443 df-ixp 8511 df-en 8559 df-dom 8560 df-sdom 8561 df-fin 8562 df-fsupp 8910 df-fi 8951 df-sup 8982 df-inf 8983 df-oi 9050 df-card 9444 df-acn 9447 df-pnf 10758 df-mnf 10759 df-xr 10760 df-ltxr 10761 df-le 10762 df-sub 10953 df-neg 10954 df-div 11379 df-nn 11720 df-2 11782 df-3 11783 df-4 11784 df-5 11785 df-6 11786 df-7 11787 df-8 11788 df-9 11789 df-n0 11980 df-xnn0 12052 df-z 12066 df-dec 12183 df-uz 12328 df-q 12434 df-rp 12476 df-xneg 12593 df-xadd 12594 df-xmul 12595 df-ioo 12828 df-ioc 12829 df-ico 12830 df-icc 12831 df-fz 12985 df-fzo 13128 df-fl 13256 df-mod 13332 df-seq 13464 df-exp 13525 df-fac 13729 df-bc 13758 df-hash 13786 df-shft 14519 df-cj 14551 df-re 14552 df-im 14553 df-sqrt 14687 df-abs 14688 df-limsup 14921 df-clim 14938 df-rlim 14939 df-sum 15139 df-ef 15516 df-sin 15518 df-cos 15519 df-pi 15521 df-dvds 15703 df-gcd 15941 df-numer 16178 df-denom 16179 df-struct 16591 df-ndx 16592 df-slot 16593 df-base 16595 df-sets 16596 df-ress 16597 df-plusg 16684 df-mulr 16685 df-starv 16686 df-sca 16687 df-vsca 16688 df-ip 16689 df-tset 16690 df-ple 16691 df-ds 16693 df-unif 16694 df-hom 16695 df-cco 16696 df-rest 16802 df-topn 16803 df-0g 16821 df-gsum 16822 df-topgen 16823 df-pt 16824 df-prds 16827 df-xrs 16881 df-qtop 16886 df-imas 16887 df-xps 16889 df-mre 16963 df-mrc 16964 df-acs 16966 df-mgm 17971 df-sgrp 18020 df-mnd 18031 df-submnd 18076 df-mulg 18346 df-cntz 18568 df-cmn 19029 df-psmet 20212 df-xmet 20213 df-met 20214 df-bl 20215 df-mopn 20216 df-fbas 20217 df-fg 20218 df-cnfld 20221 df-top 21648 df-topon 21665 df-topsp 21687 df-bases 21700 df-cld 21773 df-ntr 21774 df-cls 21775 df-nei 21852 df-lp 21890 df-perf 21891 df-cn 21981 df-cnp 21982 df-haus 22069 df-tx 22316 df-hmeo 22509 df-fil 22600 df-fm 22692 df-flim 22693 df-flf 22694 df-xms 23076 df-ms 23077 df-tms 23078 df-cncf 23633 df-limc 24621 df-dv 24622 df-log 25303 df-squarenn 40258 df-pell1qr 40259 df-pell14qr 40260 df-pell1234qr 40261 df-pellfund 40262 df-rmx 40319 df-rmy 40320 |
This theorem is referenced by: rmxluc 40353 |
Copyright terms: Public domain | W3C validator |