Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxm1 Structured version   Visualization version   GIF version

Theorem rmxm1 40756
Description: Subtraction of 1 formula for X sequence. Part 1 of equation 2.10 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 14-Oct-2014.)
Assertion
Ref Expression
rmxm1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 − 1)) = ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))))

Proof of Theorem rmxm1
StepHypRef Expression
1 neg1z 12356 . . . 4 -1 ∈ ℤ
2 rmxadd 40749 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ -1 ∈ ℤ) → (𝐴 Xrm (𝑁 + -1)) = (((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)))))
31, 2mp3an3 1449 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + -1)) = (((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)))))
4 1z 12350 . . . . . . . . 9 1 ∈ ℤ
5 rmxneg 40746 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 1 ∈ ℤ) → (𝐴 Xrm -1) = (𝐴 Xrm 1))
64, 5mpan2 688 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm -1) = (𝐴 Xrm 1))
7 rmx1 40748 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm 1) = 𝐴)
86, 7eqtrd 2778 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm -1) = 𝐴)
98adantr 481 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm -1) = 𝐴)
109oveq2d 7291 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) = ((𝐴 Xrm 𝑁) · 𝐴))
11 frmx 40735 . . . . . . . 8 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
1211fovcl 7402 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
1312nn0cnd 12295 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℂ)
14 eluzelcn 12594 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
1514adantr 481 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℂ)
1613, 15mulcomd 10996 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · 𝐴) = (𝐴 · (𝐴 Xrm 𝑁)))
1710, 16eqtrd 2778 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) = (𝐴 · (𝐴 Xrm 𝑁)))
18 rmyneg 40750 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 1 ∈ ℤ) → (𝐴 Yrm -1) = -(𝐴 Yrm 1))
194, 18mpan2 688 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm -1) = -(𝐴 Yrm 1))
20 rmy1 40752 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
2120negeqd 11215 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → -(𝐴 Yrm 1) = -1)
2219, 21eqtrd 2778 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm -1) = -1)
2322oveq2d 7291 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)) = ((𝐴 Yrm 𝑁) · -1))
2423adantr 481 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)) = ((𝐴 Yrm 𝑁) · -1))
25 frmy 40736 . . . . . . . . . . 11 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2625fovcl 7402 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
2726zcnd 12427 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℂ)
28 ax-1cn 10929 . . . . . . . . 9 1 ∈ ℂ
29 mulneg2 11412 . . . . . . . . 9 (((𝐴 Yrm 𝑁) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 Yrm 𝑁) · -1) = -((𝐴 Yrm 𝑁) · 1))
3027, 28, 29sylancl 586 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · -1) = -((𝐴 Yrm 𝑁) · 1))
3127mulid1d 10992 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · 1) = (𝐴 Yrm 𝑁))
3231negeqd 11215 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → -((𝐴 Yrm 𝑁) · 1) = -(𝐴 Yrm 𝑁))
3330, 32eqtrd 2778 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · -1) = -(𝐴 Yrm 𝑁))
3424, 33eqtrd 2778 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)) = -(𝐴 Yrm 𝑁))
3534oveq2d 7291 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1))) = (((𝐴↑2) − 1) · -(𝐴 Yrm 𝑁)))
36 rmspecnonsq 40729 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
3736eldifad 3899 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℕ)
3837nncnd 11989 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℂ)
3938adantr 481 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴↑2) − 1) ∈ ℂ)
4039, 27mulneg2d 11429 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · -(𝐴 Yrm 𝑁)) = -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))
4135, 40eqtrd 2778 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1))) = -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))
4217, 41oveq12d 7293 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)))) = ((𝐴 · (𝐴 Xrm 𝑁)) + -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))))
433, 42eqtrd 2778 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + -1)) = ((𝐴 · (𝐴 Xrm 𝑁)) + -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))))
44 zcn 12324 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
4544adantl 482 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
46 negsub 11269 . . . 4 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 + -1) = (𝑁 − 1))
4745, 28, 46sylancl 586 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝑁 + -1) = (𝑁 − 1))
4847oveq2d 7291 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + -1)) = (𝐴 Xrm (𝑁 − 1)))
4915, 13mulcld 10995 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 · (𝐴 Xrm 𝑁)) ∈ ℂ)
5039, 27mulcld 10995 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)) ∈ ℂ)
5149, 50negsubd 11338 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 · (𝐴 Xrm 𝑁)) + -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))) = ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))))
5243, 48, 513eqtr3d 2786 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 − 1)) = ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  cc 10869  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  cexp 13782  NNcsquarenn 40658   Xrm crmx 40722   Yrm crmy 40723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-dvds 15964  df-gcd 16202  df-numer 16439  df-denom 16440  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-squarenn 40663  df-pell1qr 40664  df-pell14qr 40665  df-pell1234qr 40666  df-pellfund 40667  df-rmx 40724  df-rmy 40725
This theorem is referenced by:  rmxluc  40758
  Copyright terms: Public domain W3C validator