Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxm1 Structured version   Visualization version   GIF version

Theorem rmxm1 40351
Description: Subtraction of 1 formula for X sequence. Part 1 of equation 2.10 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 14-Oct-2014.)
Assertion
Ref Expression
rmxm1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 − 1)) = ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))))

Proof of Theorem rmxm1
StepHypRef Expression
1 neg1z 12102 . . . 4 -1 ∈ ℤ
2 rmxadd 40344 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ -1 ∈ ℤ) → (𝐴 Xrm (𝑁 + -1)) = (((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)))))
31, 2mp3an3 1451 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + -1)) = (((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)))))
4 1z 12096 . . . . . . . . 9 1 ∈ ℤ
5 rmxneg 40341 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 1 ∈ ℤ) → (𝐴 Xrm -1) = (𝐴 Xrm 1))
64, 5mpan2 691 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm -1) = (𝐴 Xrm 1))
7 rmx1 40343 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm 1) = 𝐴)
86, 7eqtrd 2774 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm -1) = 𝐴)
98adantr 484 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm -1) = 𝐴)
109oveq2d 7189 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) = ((𝐴 Xrm 𝑁) · 𝐴))
11 frmx 40330 . . . . . . . 8 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
1211fovcl 7297 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
1312nn0cnd 12041 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℂ)
14 eluzelcn 12339 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
1514adantr 484 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℂ)
1613, 15mulcomd 10743 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · 𝐴) = (𝐴 · (𝐴 Xrm 𝑁)))
1710, 16eqtrd 2774 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) = (𝐴 · (𝐴 Xrm 𝑁)))
18 rmyneg 40345 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 1 ∈ ℤ) → (𝐴 Yrm -1) = -(𝐴 Yrm 1))
194, 18mpan2 691 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm -1) = -(𝐴 Yrm 1))
20 rmy1 40347 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
2120negeqd 10961 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → -(𝐴 Yrm 1) = -1)
2219, 21eqtrd 2774 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm -1) = -1)
2322oveq2d 7189 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)) = ((𝐴 Yrm 𝑁) · -1))
2423adantr 484 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)) = ((𝐴 Yrm 𝑁) · -1))
25 frmy 40331 . . . . . . . . . . 11 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2625fovcl 7297 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
2726zcnd 12172 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℂ)
28 ax-1cn 10676 . . . . . . . . 9 1 ∈ ℂ
29 mulneg2 11158 . . . . . . . . 9 (((𝐴 Yrm 𝑁) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 Yrm 𝑁) · -1) = -((𝐴 Yrm 𝑁) · 1))
3027, 28, 29sylancl 589 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · -1) = -((𝐴 Yrm 𝑁) · 1))
3127mulid1d 10739 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · 1) = (𝐴 Yrm 𝑁))
3231negeqd 10961 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → -((𝐴 Yrm 𝑁) · 1) = -(𝐴 Yrm 𝑁))
3330, 32eqtrd 2774 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · -1) = -(𝐴 Yrm 𝑁))
3424, 33eqtrd 2774 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)) = -(𝐴 Yrm 𝑁))
3534oveq2d 7189 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1))) = (((𝐴↑2) − 1) · -(𝐴 Yrm 𝑁)))
36 rmspecnonsq 40324 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
3736eldifad 3856 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℕ)
3837nncnd 11735 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℂ)
3938adantr 484 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴↑2) − 1) ∈ ℂ)
4039, 27mulneg2d 11175 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · -(𝐴 Yrm 𝑁)) = -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))
4135, 40eqtrd 2774 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1))) = -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))
4217, 41oveq12d 7191 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)))) = ((𝐴 · (𝐴 Xrm 𝑁)) + -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))))
433, 42eqtrd 2774 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + -1)) = ((𝐴 · (𝐴 Xrm 𝑁)) + -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))))
44 zcn 12070 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
4544adantl 485 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
46 negsub 11015 . . . 4 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 + -1) = (𝑁 − 1))
4745, 28, 46sylancl 589 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝑁 + -1) = (𝑁 − 1))
4847oveq2d 7189 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + -1)) = (𝐴 Xrm (𝑁 − 1)))
4915, 13mulcld 10742 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 · (𝐴 Xrm 𝑁)) ∈ ℂ)
5039, 27mulcld 10742 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)) ∈ ℂ)
5149, 50negsubd 11084 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 · (𝐴 Xrm 𝑁)) + -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))) = ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))))
5243, 48, 513eqtr3d 2782 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 − 1)) = ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  cfv 6340  (class class class)co 7173  cc 10616  1c1 10619   + caddc 10621   · cmul 10623  cmin 10951  -cneg 10952  cn 11719  2c2 11774  0cn0 11979  cz 12065  cuz 12327  cexp 13524  NNcsquarenn 40253   Xrm crmx 40317   Yrm crmy 40318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-inf2 9180  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695  ax-pre-sup 10696  ax-addf 10697  ax-mulf 10698
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-se 5485  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-of 7428  df-om 7603  df-1st 7717  df-2nd 7718  df-supp 7860  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-1o 8134  df-2o 8135  df-oadd 8138  df-omul 8139  df-er 8323  df-map 8442  df-pm 8443  df-ixp 8511  df-en 8559  df-dom 8560  df-sdom 8561  df-fin 8562  df-fsupp 8910  df-fi 8951  df-sup 8982  df-inf 8983  df-oi 9050  df-card 9444  df-acn 9447  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-div 11379  df-nn 11720  df-2 11782  df-3 11783  df-4 11784  df-5 11785  df-6 11786  df-7 11787  df-8 11788  df-9 11789  df-n0 11980  df-xnn0 12052  df-z 12066  df-dec 12183  df-uz 12328  df-q 12434  df-rp 12476  df-xneg 12593  df-xadd 12594  df-xmul 12595  df-ioo 12828  df-ioc 12829  df-ico 12830  df-icc 12831  df-fz 12985  df-fzo 13128  df-fl 13256  df-mod 13332  df-seq 13464  df-exp 13525  df-fac 13729  df-bc 13758  df-hash 13786  df-shft 14519  df-cj 14551  df-re 14552  df-im 14553  df-sqrt 14687  df-abs 14688  df-limsup 14921  df-clim 14938  df-rlim 14939  df-sum 15139  df-ef 15516  df-sin 15518  df-cos 15519  df-pi 15521  df-dvds 15703  df-gcd 15941  df-numer 16178  df-denom 16179  df-struct 16591  df-ndx 16592  df-slot 16593  df-base 16595  df-sets 16596  df-ress 16597  df-plusg 16684  df-mulr 16685  df-starv 16686  df-sca 16687  df-vsca 16688  df-ip 16689  df-tset 16690  df-ple 16691  df-ds 16693  df-unif 16694  df-hom 16695  df-cco 16696  df-rest 16802  df-topn 16803  df-0g 16821  df-gsum 16822  df-topgen 16823  df-pt 16824  df-prds 16827  df-xrs 16881  df-qtop 16886  df-imas 16887  df-xps 16889  df-mre 16963  df-mrc 16964  df-acs 16966  df-mgm 17971  df-sgrp 18020  df-mnd 18031  df-submnd 18076  df-mulg 18346  df-cntz 18568  df-cmn 19029  df-psmet 20212  df-xmet 20213  df-met 20214  df-bl 20215  df-mopn 20216  df-fbas 20217  df-fg 20218  df-cnfld 20221  df-top 21648  df-topon 21665  df-topsp 21687  df-bases 21700  df-cld 21773  df-ntr 21774  df-cls 21775  df-nei 21852  df-lp 21890  df-perf 21891  df-cn 21981  df-cnp 21982  df-haus 22069  df-tx 22316  df-hmeo 22509  df-fil 22600  df-fm 22692  df-flim 22693  df-flf 22694  df-xms 23076  df-ms 23077  df-tms 23078  df-cncf 23633  df-limc 24621  df-dv 24622  df-log 25303  df-squarenn 40258  df-pell1qr 40259  df-pell14qr 40260  df-pell1234qr 40261  df-pellfund 40262  df-rmx 40319  df-rmy 40320
This theorem is referenced by:  rmxluc  40353
  Copyright terms: Public domain W3C validator