Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxm1 Structured version   Visualization version   GIF version

Theorem rmxm1 42924
Description: Subtraction of 1 formula for X sequence. Part 1 of equation 2.10 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 14-Oct-2014.)
Assertion
Ref Expression
rmxm1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 − 1)) = ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))))

Proof of Theorem rmxm1
StepHypRef Expression
1 neg1z 12636 . . . 4 -1 ∈ ℤ
2 rmxadd 42917 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ -1 ∈ ℤ) → (𝐴 Xrm (𝑁 + -1)) = (((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)))))
31, 2mp3an3 1451 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + -1)) = (((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)))))
4 1z 12630 . . . . . . . . 9 1 ∈ ℤ
5 rmxneg 42914 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 1 ∈ ℤ) → (𝐴 Xrm -1) = (𝐴 Xrm 1))
64, 5mpan2 691 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm -1) = (𝐴 Xrm 1))
7 rmx1 42916 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm 1) = 𝐴)
86, 7eqtrd 2769 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm -1) = 𝐴)
98adantr 480 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm -1) = 𝐴)
109oveq2d 7429 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) = ((𝐴 Xrm 𝑁) · 𝐴))
11 frmx 42903 . . . . . . . 8 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
1211fovcl 7543 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
1312nn0cnd 12572 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℂ)
14 eluzelcn 12872 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
1514adantr 480 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℂ)
1613, 15mulcomd 11264 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · 𝐴) = (𝐴 · (𝐴 Xrm 𝑁)))
1710, 16eqtrd 2769 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) = (𝐴 · (𝐴 Xrm 𝑁)))
18 rmyneg 42918 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 1 ∈ ℤ) → (𝐴 Yrm -1) = -(𝐴 Yrm 1))
194, 18mpan2 691 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm -1) = -(𝐴 Yrm 1))
20 rmy1 42920 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
2120negeqd 11484 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → -(𝐴 Yrm 1) = -1)
2219, 21eqtrd 2769 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm -1) = -1)
2322oveq2d 7429 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)) = ((𝐴 Yrm 𝑁) · -1))
2423adantr 480 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)) = ((𝐴 Yrm 𝑁) · -1))
25 frmy 42904 . . . . . . . . . . 11 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2625fovcl 7543 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
2726zcnd 12706 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℂ)
28 ax-1cn 11195 . . . . . . . . 9 1 ∈ ℂ
29 mulneg2 11682 . . . . . . . . 9 (((𝐴 Yrm 𝑁) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 Yrm 𝑁) · -1) = -((𝐴 Yrm 𝑁) · 1))
3027, 28, 29sylancl 586 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · -1) = -((𝐴 Yrm 𝑁) · 1))
3127mulridd 11260 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · 1) = (𝐴 Yrm 𝑁))
3231negeqd 11484 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → -((𝐴 Yrm 𝑁) · 1) = -(𝐴 Yrm 𝑁))
3330, 32eqtrd 2769 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · -1) = -(𝐴 Yrm 𝑁))
3424, 33eqtrd 2769 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)) = -(𝐴 Yrm 𝑁))
3534oveq2d 7429 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1))) = (((𝐴↑2) − 1) · -(𝐴 Yrm 𝑁)))
36 rmspecnonsq 42896 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
3736eldifad 3943 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℕ)
3837nncnd 12264 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℂ)
3938adantr 480 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴↑2) − 1) ∈ ℂ)
4039, 27mulneg2d 11699 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · -(𝐴 Yrm 𝑁)) = -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))
4135, 40eqtrd 2769 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1))) = -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))
4217, 41oveq12d 7431 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)))) = ((𝐴 · (𝐴 Xrm 𝑁)) + -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))))
433, 42eqtrd 2769 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + -1)) = ((𝐴 · (𝐴 Xrm 𝑁)) + -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))))
44 zcn 12601 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
4544adantl 481 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
46 negsub 11539 . . . 4 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 + -1) = (𝑁 − 1))
4745, 28, 46sylancl 586 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝑁 + -1) = (𝑁 − 1))
4847oveq2d 7429 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + -1)) = (𝐴 Xrm (𝑁 − 1)))
4915, 13mulcld 11263 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 · (𝐴 Xrm 𝑁)) ∈ ℂ)
5039, 27mulcld 11263 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)) ∈ ℂ)
5149, 50negsubd 11608 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 · (𝐴 Xrm 𝑁)) + -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))) = ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))))
5243, 48, 513eqtr3d 2777 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 − 1)) = ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cfv 6541  (class class class)co 7413  cc 11135  1c1 11138   + caddc 11140   · cmul 11142  cmin 11474  -cneg 11475  cn 12248  2c2 12303  0cn0 12509  cz 12596  cuz 12860  cexp 14084  NNcsquarenn 42825   Xrm crmx 42889   Yrm crmy 42890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-omul 8493  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-acn 9964  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-xnn0 12583  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-ioo 13373  df-ioc 13374  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14296  df-bc 14325  df-hash 14353  df-shft 15089  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-limsup 15490  df-clim 15507  df-rlim 15508  df-sum 15706  df-ef 16086  df-sin 16088  df-cos 16089  df-pi 16091  df-dvds 16274  df-gcd 16515  df-numer 16755  df-denom 16756  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-starv 17289  df-sca 17290  df-vsca 17291  df-ip 17292  df-tset 17293  df-ple 17294  df-ds 17296  df-unif 17297  df-hom 17298  df-cco 17299  df-rest 17439  df-topn 17440  df-0g 17458  df-gsum 17459  df-topgen 17460  df-pt 17461  df-prds 17464  df-xrs 17519  df-qtop 17524  df-imas 17525  df-xps 17527  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19769  df-psmet 21319  df-xmet 21320  df-met 21321  df-bl 21322  df-mopn 21323  df-fbas 21324  df-fg 21325  df-cnfld 21328  df-top 22849  df-topon 22866  df-topsp 22888  df-bases 22901  df-cld 22974  df-ntr 22975  df-cls 22976  df-nei 23053  df-lp 23091  df-perf 23092  df-cn 23182  df-cnp 23183  df-haus 23270  df-tx 23517  df-hmeo 23710  df-fil 23801  df-fm 23893  df-flim 23894  df-flf 23895  df-xms 24276  df-ms 24277  df-tms 24278  df-cncf 24841  df-limc 25838  df-dv 25839  df-log 26535  df-squarenn 42830  df-pell1qr 42831  df-pell14qr 42832  df-pell1234qr 42833  df-pellfund 42834  df-rmx 42891  df-rmy 42892
This theorem is referenced by:  rmxluc  42926
  Copyright terms: Public domain W3C validator