![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmxm1 | Structured version Visualization version GIF version |
Description: Subtraction of 1 formula for X sequence. Part 1 of equation 2.10 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 14-Oct-2014.) |
Ref | Expression |
---|---|
rmxm1 | ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 − 1)) = ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1z 12594 | . . . 4 ⊢ -1 ∈ ℤ | |
2 | rmxadd 41651 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ -1 ∈ ℤ) → (𝐴 Xrm (𝑁 + -1)) = (((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1))))) | |
3 | 1, 2 | mp3an3 1450 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + -1)) = (((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1))))) |
4 | 1z 12588 | . . . . . . . . 9 ⊢ 1 ∈ ℤ | |
5 | rmxneg 41648 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 1 ∈ ℤ) → (𝐴 Xrm -1) = (𝐴 Xrm 1)) | |
6 | 4, 5 | mpan2 689 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm -1) = (𝐴 Xrm 1)) |
7 | rmx1 41650 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm 1) = 𝐴) | |
8 | 6, 7 | eqtrd 2772 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm -1) = 𝐴) |
9 | 8 | adantr 481 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm -1) = 𝐴) |
10 | 9 | oveq2d 7421 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) = ((𝐴 Xrm 𝑁) · 𝐴)) |
11 | frmx 41637 | . . . . . . . 8 ⊢ Xrm :((ℤ≥‘2) × ℤ)⟶ℕ0 | |
12 | 11 | fovcl 7533 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0) |
13 | 12 | nn0cnd 12530 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℂ) |
14 | eluzelcn 12830 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℂ) | |
15 | 14 | adantr 481 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℂ) |
16 | 13, 15 | mulcomd 11231 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · 𝐴) = (𝐴 · (𝐴 Xrm 𝑁))) |
17 | 10, 16 | eqtrd 2772 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) = (𝐴 · (𝐴 Xrm 𝑁))) |
18 | rmyneg 41652 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 1 ∈ ℤ) → (𝐴 Yrm -1) = -(𝐴 Yrm 1)) | |
19 | 4, 18 | mpan2 689 | . . . . . . . . . 10 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm -1) = -(𝐴 Yrm 1)) |
20 | rmy1 41654 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm 1) = 1) | |
21 | 20 | negeqd 11450 | . . . . . . . . . 10 ⊢ (𝐴 ∈ (ℤ≥‘2) → -(𝐴 Yrm 1) = -1) |
22 | 19, 21 | eqtrd 2772 | . . . . . . . . 9 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm -1) = -1) |
23 | 22 | oveq2d 7421 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)) = ((𝐴 Yrm 𝑁) · -1)) |
24 | 23 | adantr 481 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)) = ((𝐴 Yrm 𝑁) · -1)) |
25 | frmy 41638 | . . . . . . . . . . 11 ⊢ Yrm :((ℤ≥‘2) × ℤ)⟶ℤ | |
26 | 25 | fovcl 7533 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ) |
27 | 26 | zcnd 12663 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℂ) |
28 | ax-1cn 11164 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
29 | mulneg2 11647 | . . . . . . . . 9 ⊢ (((𝐴 Yrm 𝑁) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 Yrm 𝑁) · -1) = -((𝐴 Yrm 𝑁) · 1)) | |
30 | 27, 28, 29 | sylancl 586 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · -1) = -((𝐴 Yrm 𝑁) · 1)) |
31 | 27 | mulridd 11227 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · 1) = (𝐴 Yrm 𝑁)) |
32 | 31 | negeqd 11450 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → -((𝐴 Yrm 𝑁) · 1) = -(𝐴 Yrm 𝑁)) |
33 | 30, 32 | eqtrd 2772 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · -1) = -(𝐴 Yrm 𝑁)) |
34 | 24, 33 | eqtrd 2772 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)) = -(𝐴 Yrm 𝑁)) |
35 | 34 | oveq2d 7421 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1))) = (((𝐴↑2) − 1) · -(𝐴 Yrm 𝑁))) |
36 | rmspecnonsq 41630 | . . . . . . . . 9 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN)) | |
37 | 36 | eldifad 3959 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℕ) |
38 | 37 | nncnd 12224 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℂ) |
39 | 38 | adantr 481 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴↑2) − 1) ∈ ℂ) |
40 | 39, 27 | mulneg2d 11664 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · -(𝐴 Yrm 𝑁)) = -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))) |
41 | 35, 40 | eqtrd 2772 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1))) = -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))) |
42 | 17, 41 | oveq12d 7423 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁) · (𝐴 Xrm -1)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm -1)))) = ((𝐴 · (𝐴 Xrm 𝑁)) + -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))) |
43 | 3, 42 | eqtrd 2772 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + -1)) = ((𝐴 · (𝐴 Xrm 𝑁)) + -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))) |
44 | zcn 12559 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
45 | 44 | adantl 482 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ) |
46 | negsub 11504 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 + -1) = (𝑁 − 1)) | |
47 | 45, 28, 46 | sylancl 586 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝑁 + -1) = (𝑁 − 1)) |
48 | 47 | oveq2d 7421 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + -1)) = (𝐴 Xrm (𝑁 − 1))) |
49 | 15, 13 | mulcld 11230 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 · (𝐴 Xrm 𝑁)) ∈ ℂ) |
50 | 39, 27 | mulcld 11230 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)) ∈ ℂ) |
51 | 49, 50 | negsubd 11573 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 · (𝐴 Xrm 𝑁)) + -(((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))) = ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))) |
52 | 43, 48, 51 | 3eqtr3d 2780 | 1 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 − 1)) = ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ‘cfv 6540 (class class class)co 7405 ℂcc 11104 1c1 11107 + caddc 11109 · cmul 11111 − cmin 11440 -cneg 11441 ℕcn 12208 2c2 12263 ℕ0cn0 12468 ℤcz 12554 ℤ≥cuz 12818 ↑cexp 14023 ◻NNcsquarenn 41559 Xrm crmx 41623 Yrm crmy 41624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-omul 8467 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-acn 9933 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-xnn0 12541 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ioc 13325 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-fac 14230 df-bc 14259 df-hash 14287 df-shft 15010 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15411 df-clim 15428 df-rlim 15429 df-sum 15629 df-ef 16007 df-sin 16009 df-cos 16010 df-pi 16012 df-dvds 16194 df-gcd 16432 df-numer 16667 df-denom 16668 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-pt 17386 df-prds 17389 df-xrs 17444 df-qtop 17449 df-imas 17450 df-xps 17452 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-mulg 18945 df-cntz 19175 df-cmn 19644 df-psmet 20928 df-xmet 20929 df-met 20930 df-bl 20931 df-mopn 20932 df-fbas 20933 df-fg 20934 df-cnfld 20937 df-top 22387 df-topon 22404 df-topsp 22426 df-bases 22440 df-cld 22514 df-ntr 22515 df-cls 22516 df-nei 22593 df-lp 22631 df-perf 22632 df-cn 22722 df-cnp 22723 df-haus 22810 df-tx 23057 df-hmeo 23250 df-fil 23341 df-fm 23433 df-flim 23434 df-flf 23435 df-xms 23817 df-ms 23818 df-tms 23819 df-cncf 24385 df-limc 25374 df-dv 25375 df-log 26056 df-squarenn 41564 df-pell1qr 41565 df-pell14qr 41566 df-pell1234qr 41567 df-pellfund 41568 df-rmx 41625 df-rmy 41626 |
This theorem is referenced by: rmxluc 41660 |
Copyright terms: Public domain | W3C validator |