![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmxy0 | Structured version Visualization version GIF version |
Description: Value of the X and Y sequences at 0. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
Ref | Expression |
---|---|
rmxy0 | ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 11829 | . . . 4 ⊢ 0 ∈ ℤ | |
2 | rmxyval 38948 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 0 ∈ ℤ) → ((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑0)) | |
3 | 1, 2 | mpan2 687 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑0)) |
4 | rmbaserp 38952 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℝ+) | |
5 | 4 | rpcnd 12272 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℂ) |
6 | 5 | exp0d 13342 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑0) = 1) |
7 | rmspecpos 38949 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℝ+) | |
8 | 7 | rpcnd 12272 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℂ) |
9 | 8 | sqrtcld 14619 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ ℂ) |
10 | 9 | mul01d 10675 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((√‘((𝐴↑2) − 1)) · 0) = 0) |
11 | 10 | oveq2d 7023 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (1 + ((√‘((𝐴↑2) − 1)) · 0)) = (1 + 0)) |
12 | 1p0e1 11598 | . . . 4 ⊢ (1 + 0) = 1 | |
13 | 11, 12 | syl6req 2846 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 = (1 + ((√‘((𝐴↑2) − 1)) · 0))) |
14 | 3, 6, 13 | 3eqtrd 2833 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = (1 + ((√‘((𝐴↑2) − 1)) · 0))) |
15 | rmspecsqrtnq 38939 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ)) | |
16 | nn0ssq 12195 | . . . 4 ⊢ ℕ0 ⊆ ℚ | |
17 | frmx 38946 | . . . . . 6 ⊢ Xrm :((ℤ≥‘2) × ℤ)⟶ℕ0 | |
18 | 17 | fovcl 7126 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 0 ∈ ℤ) → (𝐴 Xrm 0) ∈ ℕ0) |
19 | 1, 18 | mpan2 687 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm 0) ∈ ℕ0) |
20 | 16, 19 | sseldi 3882 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm 0) ∈ ℚ) |
21 | zssq 12194 | . . . 4 ⊢ ℤ ⊆ ℚ | |
22 | frmy 38947 | . . . . . 6 ⊢ Yrm :((ℤ≥‘2) × ℤ)⟶ℤ | |
23 | 22 | fovcl 7126 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 0 ∈ ℤ) → (𝐴 Yrm 0) ∈ ℤ) |
24 | 1, 23 | mpan2 687 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm 0) ∈ ℤ) |
25 | 21, 24 | sseldi 3882 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm 0) ∈ ℚ) |
26 | 1z 11850 | . . . . 5 ⊢ 1 ∈ ℤ | |
27 | 21, 26 | sselii 3881 | . . . 4 ⊢ 1 ∈ ℚ |
28 | 27 | a1i 11 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 ∈ ℚ) |
29 | 21, 1 | sselii 3881 | . . . 4 ⊢ 0 ∈ ℚ |
30 | 29 | a1i 11 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 0 ∈ ℚ) |
31 | qirropth 38941 | . . 3 ⊢ (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ ((𝐴 Xrm 0) ∈ ℚ ∧ (𝐴 Yrm 0) ∈ ℚ) ∧ (1 ∈ ℚ ∧ 0 ∈ ℚ)) → (((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = (1 + ((√‘((𝐴↑2) − 1)) · 0)) ↔ ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0))) | |
32 | 15, 20, 25, 28, 30, 31 | syl122anc 1370 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → (((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = (1 + ((√‘((𝐴↑2) − 1)) · 0)) ↔ ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0))) |
33 | 14, 32 | mpbid 233 | 1 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1520 ∈ wcel 2079 ∖ cdif 3851 ‘cfv 6217 (class class class)co 7007 ℂcc 10370 0cc0 10372 1c1 10373 + caddc 10375 · cmul 10377 − cmin 10706 2c2 11529 ℕ0cn0 11734 ℤcz 11818 ℤ≥cuz 12082 ℚcq 12186 ↑cexp 13267 √csqrt 14414 Xrm crmx 38933 Yrm crmy 38934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-rep 5075 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-inf2 8939 ax-cnex 10428 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 ax-pre-sup 10450 ax-addf 10451 ax-mulf 10452 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-fal 1533 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rmo 3111 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-int 4777 df-iun 4821 df-iin 4822 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-se 5395 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-isom 6226 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-of 7258 df-om 7428 df-1st 7536 df-2nd 7537 df-supp 7673 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-1o 7944 df-2o 7945 df-oadd 7948 df-omul 7949 df-er 8130 df-map 8249 df-pm 8250 df-ixp 8301 df-en 8348 df-dom 8349 df-sdom 8350 df-fin 8351 df-fsupp 8670 df-fi 8711 df-sup 8742 df-inf 8743 df-oi 8810 df-card 9203 df-acn 9206 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-div 11135 df-nn 11476 df-2 11537 df-3 11538 df-4 11539 df-5 11540 df-6 11541 df-7 11542 df-8 11543 df-9 11544 df-n0 11735 df-xnn0 11805 df-z 11819 df-dec 11937 df-uz 12083 df-q 12187 df-rp 12229 df-xneg 12346 df-xadd 12347 df-xmul 12348 df-ioo 12581 df-ioc 12582 df-ico 12583 df-icc 12584 df-fz 12732 df-fzo 12873 df-fl 13000 df-mod 13076 df-seq 13208 df-exp 13268 df-fac 13472 df-bc 13501 df-hash 13529 df-shft 14248 df-cj 14280 df-re 14281 df-im 14282 df-sqrt 14416 df-abs 14417 df-limsup 14650 df-clim 14667 df-rlim 14668 df-sum 14865 df-ef 15242 df-sin 15244 df-cos 15245 df-pi 15247 df-dvds 15429 df-gcd 15665 df-numer 15892 df-denom 15893 df-struct 16302 df-ndx 16303 df-slot 16304 df-base 16306 df-sets 16307 df-ress 16308 df-plusg 16395 df-mulr 16396 df-starv 16397 df-sca 16398 df-vsca 16399 df-ip 16400 df-tset 16401 df-ple 16402 df-ds 16404 df-unif 16405 df-hom 16406 df-cco 16407 df-rest 16513 df-topn 16514 df-0g 16532 df-gsum 16533 df-topgen 16534 df-pt 16535 df-prds 16538 df-xrs 16592 df-qtop 16597 df-imas 16598 df-xps 16600 df-mre 16674 df-mrc 16675 df-acs 16677 df-mgm 17669 df-sgrp 17711 df-mnd 17722 df-submnd 17763 df-mulg 17970 df-cntz 18176 df-cmn 18623 df-psmet 20207 df-xmet 20208 df-met 20209 df-bl 20210 df-mopn 20211 df-fbas 20212 df-fg 20213 df-cnfld 20216 df-top 21174 df-topon 21191 df-topsp 21213 df-bases 21226 df-cld 21299 df-ntr 21300 df-cls 21301 df-nei 21378 df-lp 21416 df-perf 21417 df-cn 21507 df-cnp 21508 df-haus 21595 df-tx 21842 df-hmeo 22035 df-fil 22126 df-fm 22218 df-flim 22219 df-flf 22220 df-xms 22601 df-ms 22602 df-tms 22603 df-cncf 23157 df-limc 24135 df-dv 24136 df-log 24809 df-squarenn 38874 df-pell1qr 38875 df-pell14qr 38876 df-pell1234qr 38877 df-pellfund 38878 df-rmx 38935 df-rmy 38936 |
This theorem is referenced by: rmx0 38958 rmy0 38962 |
Copyright terms: Public domain | W3C validator |