![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmxy0 | Structured version Visualization version GIF version |
Description: Value of the X and Y sequences at 0. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
Ref | Expression |
---|---|
rmxy0 | ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12565 | . . . 4 ⊢ 0 ∈ ℤ | |
2 | rmxyval 41587 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 0 ∈ ℤ) → ((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑0)) | |
3 | 1, 2 | mpan2 690 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑0)) |
4 | rmbaserp 41591 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℝ+) | |
5 | 4 | rpcnd 13014 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℂ) |
6 | 5 | exp0d 14101 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑0) = 1) |
7 | rmspecpos 41588 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℝ+) | |
8 | 7 | rpcnd 13014 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℂ) |
9 | 8 | sqrtcld 15380 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ ℂ) |
10 | 9 | mul01d 11409 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((√‘((𝐴↑2) − 1)) · 0) = 0) |
11 | 10 | oveq2d 7420 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (1 + ((√‘((𝐴↑2) − 1)) · 0)) = (1 + 0)) |
12 | 1p0e1 12332 | . . . 4 ⊢ (1 + 0) = 1 | |
13 | 11, 12 | eqtr2di 2790 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 = (1 + ((√‘((𝐴↑2) − 1)) · 0))) |
14 | 3, 6, 13 | 3eqtrd 2777 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = (1 + ((√‘((𝐴↑2) − 1)) · 0))) |
15 | rmspecsqrtnq 41577 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ)) | |
16 | nn0ssq 12937 | . . . 4 ⊢ ℕ0 ⊆ ℚ | |
17 | frmx 41585 | . . . . . 6 ⊢ Xrm :((ℤ≥‘2) × ℤ)⟶ℕ0 | |
18 | 17 | fovcl 7532 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 0 ∈ ℤ) → (𝐴 Xrm 0) ∈ ℕ0) |
19 | 1, 18 | mpan2 690 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm 0) ∈ ℕ0) |
20 | 16, 19 | sselid 3979 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm 0) ∈ ℚ) |
21 | zssq 12936 | . . . 4 ⊢ ℤ ⊆ ℚ | |
22 | frmy 41586 | . . . . . 6 ⊢ Yrm :((ℤ≥‘2) × ℤ)⟶ℤ | |
23 | 22 | fovcl 7532 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 0 ∈ ℤ) → (𝐴 Yrm 0) ∈ ℤ) |
24 | 1, 23 | mpan2 690 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm 0) ∈ ℤ) |
25 | 21, 24 | sselid 3979 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm 0) ∈ ℚ) |
26 | 1z 12588 | . . . . 5 ⊢ 1 ∈ ℤ | |
27 | 21, 26 | sselii 3978 | . . . 4 ⊢ 1 ∈ ℚ |
28 | 27 | a1i 11 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 ∈ ℚ) |
29 | 21, 1 | sselii 3978 | . . . 4 ⊢ 0 ∈ ℚ |
30 | 29 | a1i 11 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 0 ∈ ℚ) |
31 | qirropth 41579 | . . 3 ⊢ (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ ((𝐴 Xrm 0) ∈ ℚ ∧ (𝐴 Yrm 0) ∈ ℚ) ∧ (1 ∈ ℚ ∧ 0 ∈ ℚ)) → (((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = (1 + ((√‘((𝐴↑2) − 1)) · 0)) ↔ ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0))) | |
32 | 15, 20, 25, 28, 30, 31 | syl122anc 1380 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → (((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = (1 + ((√‘((𝐴↑2) − 1)) · 0)) ↔ ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0))) |
33 | 14, 32 | mpbid 231 | 1 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∖ cdif 3944 ‘cfv 6540 (class class class)co 7404 ℂcc 11104 0cc0 11106 1c1 11107 + caddc 11109 · cmul 11111 − cmin 11440 2c2 12263 ℕ0cn0 12468 ℤcz 12554 ℤ≥cuz 12818 ℚcq 12928 ↑cexp 14023 √csqrt 15176 Xrm crmx 41571 Yrm crmy 41572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7665 df-om 7851 df-1st 7970 df-2nd 7971 df-supp 8142 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-oadd 8465 df-omul 8466 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-acn 9933 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-xnn0 12541 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ioc 13325 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-fac 14230 df-bc 14259 df-hash 14287 df-shft 15010 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15411 df-clim 15428 df-rlim 15429 df-sum 15629 df-ef 16007 df-sin 16009 df-cos 16010 df-pi 16012 df-dvds 16194 df-gcd 16432 df-numer 16667 df-denom 16668 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-pt 17386 df-prds 17389 df-xrs 17444 df-qtop 17449 df-imas 17450 df-xps 17452 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-mulg 18945 df-cntz 19175 df-cmn 19643 df-psmet 20921 df-xmet 20922 df-met 20923 df-bl 20924 df-mopn 20925 df-fbas 20926 df-fg 20927 df-cnfld 20930 df-top 22378 df-topon 22395 df-topsp 22417 df-bases 22431 df-cld 22505 df-ntr 22506 df-cls 22507 df-nei 22584 df-lp 22622 df-perf 22623 df-cn 22713 df-cnp 22714 df-haus 22801 df-tx 23048 df-hmeo 23241 df-fil 23332 df-fm 23424 df-flim 23425 df-flf 23426 df-xms 23808 df-ms 23809 df-tms 23810 df-cncf 24376 df-limc 25365 df-dv 25366 df-log 26047 df-squarenn 41512 df-pell1qr 41513 df-pell14qr 41514 df-pell1234qr 41515 df-pellfund 41516 df-rmx 41573 df-rmy 41574 |
This theorem is referenced by: rmx0 41597 rmy0 41601 |
Copyright terms: Public domain | W3C validator |