| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rmxy0 | Structured version Visualization version GIF version | ||
| Description: Value of the X and Y sequences at 0. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
| Ref | Expression |
|---|---|
| rmxy0 | ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12474 | . . . 4 ⊢ 0 ∈ ℤ | |
| 2 | rmxyval 42948 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 0 ∈ ℤ) → ((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑0)) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑0)) |
| 4 | rmbaserp 42952 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℝ+) | |
| 5 | 4 | rpcnd 12931 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℂ) |
| 6 | 5 | exp0d 14042 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑0) = 1) |
| 7 | rmspecpos 42949 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℝ+) | |
| 8 | 7 | rpcnd 12931 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℂ) |
| 9 | 8 | sqrtcld 15342 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ ℂ) |
| 10 | 9 | mul01d 11307 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((√‘((𝐴↑2) − 1)) · 0) = 0) |
| 11 | 10 | oveq2d 7357 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (1 + ((√‘((𝐴↑2) − 1)) · 0)) = (1 + 0)) |
| 12 | 1p0e1 12239 | . . . 4 ⊢ (1 + 0) = 1 | |
| 13 | 11, 12 | eqtr2di 2783 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 = (1 + ((√‘((𝐴↑2) − 1)) · 0))) |
| 14 | 3, 6, 13 | 3eqtrd 2770 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = (1 + ((√‘((𝐴↑2) − 1)) · 0))) |
| 15 | rmspecsqrtnq 42939 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ)) | |
| 16 | nn0ssq 12850 | . . . 4 ⊢ ℕ0 ⊆ ℚ | |
| 17 | frmx 42946 | . . . . . 6 ⊢ Xrm :((ℤ≥‘2) × ℤ)⟶ℕ0 | |
| 18 | 17 | fovcl 7469 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 0 ∈ ℤ) → (𝐴 Xrm 0) ∈ ℕ0) |
| 19 | 1, 18 | mpan2 691 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm 0) ∈ ℕ0) |
| 20 | 16, 19 | sselid 3927 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm 0) ∈ ℚ) |
| 21 | zssq 12849 | . . . 4 ⊢ ℤ ⊆ ℚ | |
| 22 | frmy 42947 | . . . . . 6 ⊢ Yrm :((ℤ≥‘2) × ℤ)⟶ℤ | |
| 23 | 22 | fovcl 7469 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 0 ∈ ℤ) → (𝐴 Yrm 0) ∈ ℤ) |
| 24 | 1, 23 | mpan2 691 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm 0) ∈ ℤ) |
| 25 | 21, 24 | sselid 3927 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm 0) ∈ ℚ) |
| 26 | 1z 12497 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 27 | 21, 26 | sselii 3926 | . . . 4 ⊢ 1 ∈ ℚ |
| 28 | 27 | a1i 11 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 ∈ ℚ) |
| 29 | 21, 1 | sselii 3926 | . . . 4 ⊢ 0 ∈ ℚ |
| 30 | 29 | a1i 11 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 0 ∈ ℚ) |
| 31 | qirropth 42941 | . . 3 ⊢ (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ ((𝐴 Xrm 0) ∈ ℚ ∧ (𝐴 Yrm 0) ∈ ℚ) ∧ (1 ∈ ℚ ∧ 0 ∈ ℚ)) → (((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = (1 + ((√‘((𝐴↑2) − 1)) · 0)) ↔ ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0))) | |
| 32 | 15, 20, 25, 28, 30, 31 | syl122anc 1381 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → (((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = (1 + ((√‘((𝐴↑2) − 1)) · 0)) ↔ ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0))) |
| 33 | 14, 32 | mpbid 232 | 1 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 0cc0 11001 1c1 11002 + caddc 11004 · cmul 11006 − cmin 11339 2c2 12175 ℕ0cn0 12376 ℤcz 12463 ℤ≥cuz 12727 ℚcq 12841 ↑cexp 13963 √csqrt 15135 Xrm crmx 42933 Yrm crmy 42934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-omul 8385 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9827 df-acn 9830 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-xnn0 12450 df-z 12464 df-dec 12584 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-ioo 13244 df-ioc 13245 df-ico 13246 df-icc 13247 df-fz 13403 df-fzo 13550 df-fl 13691 df-mod 13769 df-seq 13904 df-exp 13964 df-fac 14176 df-bc 14205 df-hash 14233 df-shft 14969 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-limsup 15373 df-clim 15390 df-rlim 15391 df-sum 15589 df-ef 15969 df-sin 15971 df-cos 15972 df-pi 15974 df-dvds 16159 df-gcd 16401 df-numer 16641 df-denom 16642 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-rest 17321 df-topn 17322 df-0g 17340 df-gsum 17341 df-topgen 17342 df-pt 17343 df-prds 17346 df-xrs 17401 df-qtop 17406 df-imas 17407 df-xps 17409 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-mulg 18976 df-cntz 19224 df-cmn 19689 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-fbas 21283 df-fg 21284 df-cnfld 21287 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 df-cld 22929 df-ntr 22930 df-cls 22931 df-nei 23008 df-lp 23046 df-perf 23047 df-cn 23137 df-cnp 23138 df-haus 23225 df-tx 23472 df-hmeo 23665 df-fil 23756 df-fm 23848 df-flim 23849 df-flf 23850 df-xms 24230 df-ms 24231 df-tms 24232 df-cncf 24793 df-limc 25789 df-dv 25790 df-log 26487 df-squarenn 42874 df-pell1qr 42875 df-pell14qr 42876 df-pell1234qr 42877 df-pellfund 42878 df-rmx 42935 df-rmy 42936 |
| This theorem is referenced by: rmx0 42958 rmy0 42962 |
| Copyright terms: Public domain | W3C validator |