| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rmxy0 | Structured version Visualization version GIF version | ||
| Description: Value of the X and Y sequences at 0. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
| Ref | Expression |
|---|---|
| rmxy0 | ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12501 | . . . 4 ⊢ 0 ∈ ℤ | |
| 2 | rmxyval 42908 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 0 ∈ ℤ) → ((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑0)) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑0)) |
| 4 | rmbaserp 42912 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℝ+) | |
| 5 | 4 | rpcnd 12958 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℂ) |
| 6 | 5 | exp0d 14066 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑0) = 1) |
| 7 | rmspecpos 42909 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℝ+) | |
| 8 | 7 | rpcnd 12958 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℂ) |
| 9 | 8 | sqrtcld 15366 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ ℂ) |
| 10 | 9 | mul01d 11334 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((√‘((𝐴↑2) − 1)) · 0) = 0) |
| 11 | 10 | oveq2d 7369 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (1 + ((√‘((𝐴↑2) − 1)) · 0)) = (1 + 0)) |
| 12 | 1p0e1 12266 | . . . 4 ⊢ (1 + 0) = 1 | |
| 13 | 11, 12 | eqtr2di 2781 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 = (1 + ((√‘((𝐴↑2) − 1)) · 0))) |
| 14 | 3, 6, 13 | 3eqtrd 2768 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = (1 + ((√‘((𝐴↑2) − 1)) · 0))) |
| 15 | rmspecsqrtnq 42899 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ)) | |
| 16 | nn0ssq 12877 | . . . 4 ⊢ ℕ0 ⊆ ℚ | |
| 17 | frmx 42906 | . . . . . 6 ⊢ Xrm :((ℤ≥‘2) × ℤ)⟶ℕ0 | |
| 18 | 17 | fovcl 7481 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 0 ∈ ℤ) → (𝐴 Xrm 0) ∈ ℕ0) |
| 19 | 1, 18 | mpan2 691 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm 0) ∈ ℕ0) |
| 20 | 16, 19 | sselid 3935 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm 0) ∈ ℚ) |
| 21 | zssq 12876 | . . . 4 ⊢ ℤ ⊆ ℚ | |
| 22 | frmy 42907 | . . . . . 6 ⊢ Yrm :((ℤ≥‘2) × ℤ)⟶ℤ | |
| 23 | 22 | fovcl 7481 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 0 ∈ ℤ) → (𝐴 Yrm 0) ∈ ℤ) |
| 24 | 1, 23 | mpan2 691 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm 0) ∈ ℤ) |
| 25 | 21, 24 | sselid 3935 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm 0) ∈ ℚ) |
| 26 | 1z 12524 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 27 | 21, 26 | sselii 3934 | . . . 4 ⊢ 1 ∈ ℚ |
| 28 | 27 | a1i 11 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 ∈ ℚ) |
| 29 | 21, 1 | sselii 3934 | . . . 4 ⊢ 0 ∈ ℚ |
| 30 | 29 | a1i 11 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 0 ∈ ℚ) |
| 31 | qirropth 42901 | . . 3 ⊢ (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ ((𝐴 Xrm 0) ∈ ℚ ∧ (𝐴 Yrm 0) ∈ ℚ) ∧ (1 ∈ ℚ ∧ 0 ∈ ℚ)) → (((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = (1 + ((√‘((𝐴↑2) − 1)) · 0)) ↔ ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0))) | |
| 32 | 15, 20, 25, 28, 30, 31 | syl122anc 1381 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → (((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = (1 + ((√‘((𝐴↑2) − 1)) · 0)) ↔ ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0))) |
| 33 | 14, 32 | mpbid 232 | 1 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3902 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 − cmin 11366 2c2 12202 ℕ0cn0 12403 ℤcz 12490 ℤ≥cuz 12754 ℚcq 12868 ↑cexp 13987 √csqrt 15159 Xrm crmx 42893 Yrm crmy 42894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-omul 8400 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-acn 9857 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-xnn0 12477 df-z 12491 df-dec 12611 df-uz 12755 df-q 12869 df-rp 12913 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13271 df-ioc 13272 df-ico 13273 df-icc 13274 df-fz 13430 df-fzo 13577 df-fl 13715 df-mod 13793 df-seq 13928 df-exp 13988 df-fac 14200 df-bc 14229 df-hash 14257 df-shft 14993 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-limsup 15397 df-clim 15414 df-rlim 15415 df-sum 15613 df-ef 15993 df-sin 15995 df-cos 15996 df-pi 15998 df-dvds 16183 df-gcd 16425 df-numer 16665 df-denom 16666 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-mulr 17194 df-starv 17195 df-sca 17196 df-vsca 17197 df-ip 17198 df-tset 17199 df-ple 17200 df-ds 17202 df-unif 17203 df-hom 17204 df-cco 17205 df-rest 17345 df-topn 17346 df-0g 17364 df-gsum 17365 df-topgen 17366 df-pt 17367 df-prds 17370 df-xrs 17425 df-qtop 17430 df-imas 17431 df-xps 17433 df-mre 17507 df-mrc 17508 df-acs 17510 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-submnd 18677 df-mulg 18966 df-cntz 19215 df-cmn 19680 df-psmet 21272 df-xmet 21273 df-met 21274 df-bl 21275 df-mopn 21276 df-fbas 21277 df-fg 21278 df-cnfld 21281 df-top 22798 df-topon 22815 df-topsp 22837 df-bases 22850 df-cld 22923 df-ntr 22924 df-cls 22925 df-nei 23002 df-lp 23040 df-perf 23041 df-cn 23131 df-cnp 23132 df-haus 23219 df-tx 23466 df-hmeo 23659 df-fil 23750 df-fm 23842 df-flim 23843 df-flf 23844 df-xms 24225 df-ms 24226 df-tms 24227 df-cncf 24788 df-limc 25784 df-dv 25785 df-log 26482 df-squarenn 42834 df-pell1qr 42835 df-pell14qr 42836 df-pell1234qr 42837 df-pellfund 42838 df-rmx 42895 df-rmy 42896 |
| This theorem is referenced by: rmx0 42918 rmy0 42922 |
| Copyright terms: Public domain | W3C validator |