Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmxy0 | Structured version Visualization version GIF version |
Description: Value of the X and Y sequences at 0. (Contributed by Stefan O'Rear, 22-Sep-2014.) |
Ref | Expression |
---|---|
rmxy0 | ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12187 | . . . 4 ⊢ 0 ∈ ℤ | |
2 | rmxyval 40440 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 0 ∈ ℤ) → ((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑0)) | |
3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑0)) |
4 | rmbaserp 40444 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℝ+) | |
5 | 4 | rpcnd 12630 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℂ) |
6 | 5 | exp0d 13710 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑0) = 1) |
7 | rmspecpos 40441 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℝ+) | |
8 | 7 | rpcnd 12630 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℂ) |
9 | 8 | sqrtcld 15001 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ ℂ) |
10 | 9 | mul01d 11031 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((√‘((𝐴↑2) − 1)) · 0) = 0) |
11 | 10 | oveq2d 7229 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (1 + ((√‘((𝐴↑2) − 1)) · 0)) = (1 + 0)) |
12 | 1p0e1 11954 | . . . 4 ⊢ (1 + 0) = 1 | |
13 | 11, 12 | eqtr2di 2795 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 = (1 + ((√‘((𝐴↑2) − 1)) · 0))) |
14 | 3, 6, 13 | 3eqtrd 2781 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = (1 + ((√‘((𝐴↑2) − 1)) · 0))) |
15 | rmspecsqrtnq 40431 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ)) | |
16 | nn0ssq 12553 | . . . 4 ⊢ ℕ0 ⊆ ℚ | |
17 | frmx 40438 | . . . . . 6 ⊢ Xrm :((ℤ≥‘2) × ℤ)⟶ℕ0 | |
18 | 17 | fovcl 7338 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 0 ∈ ℤ) → (𝐴 Xrm 0) ∈ ℕ0) |
19 | 1, 18 | mpan2 691 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm 0) ∈ ℕ0) |
20 | 16, 19 | sseldi 3899 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm 0) ∈ ℚ) |
21 | zssq 12552 | . . . 4 ⊢ ℤ ⊆ ℚ | |
22 | frmy 40439 | . . . . . 6 ⊢ Yrm :((ℤ≥‘2) × ℤ)⟶ℤ | |
23 | 22 | fovcl 7338 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 0 ∈ ℤ) → (𝐴 Yrm 0) ∈ ℤ) |
24 | 1, 23 | mpan2 691 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm 0) ∈ ℤ) |
25 | 21, 24 | sseldi 3899 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm 0) ∈ ℚ) |
26 | 1z 12207 | . . . . 5 ⊢ 1 ∈ ℤ | |
27 | 21, 26 | sselii 3897 | . . . 4 ⊢ 1 ∈ ℚ |
28 | 27 | a1i 11 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 ∈ ℚ) |
29 | 21, 1 | sselii 3897 | . . . 4 ⊢ 0 ∈ ℚ |
30 | 29 | a1i 11 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 0 ∈ ℚ) |
31 | qirropth 40433 | . . 3 ⊢ (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ ((𝐴 Xrm 0) ∈ ℚ ∧ (𝐴 Yrm 0) ∈ ℚ) ∧ (1 ∈ ℚ ∧ 0 ∈ ℚ)) → (((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = (1 + ((√‘((𝐴↑2) − 1)) · 0)) ↔ ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0))) | |
32 | 15, 20, 25, 28, 30, 31 | syl122anc 1381 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → (((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = (1 + ((√‘((𝐴↑2) − 1)) · 0)) ↔ ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0))) |
33 | 14, 32 | mpbid 235 | 1 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∖ cdif 3863 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 0cc0 10729 1c1 10730 + caddc 10732 · cmul 10734 − cmin 11062 2c2 11885 ℕ0cn0 12090 ℤcz 12176 ℤ≥cuz 12438 ℚcq 12544 ↑cexp 13635 √csqrt 14796 Xrm crmx 40425 Yrm crmy 40426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 ax-addf 10808 ax-mulf 10809 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-2o 8203 df-oadd 8206 df-omul 8207 df-er 8391 df-map 8510 df-pm 8511 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-fi 9027 df-sup 9058 df-inf 9059 df-oi 9126 df-card 9555 df-acn 9558 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-xnn0 12163 df-z 12177 df-dec 12294 df-uz 12439 df-q 12545 df-rp 12587 df-xneg 12704 df-xadd 12705 df-xmul 12706 df-ioo 12939 df-ioc 12940 df-ico 12941 df-icc 12942 df-fz 13096 df-fzo 13239 df-fl 13367 df-mod 13443 df-seq 13575 df-exp 13636 df-fac 13840 df-bc 13869 df-hash 13897 df-shft 14630 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-limsup 15032 df-clim 15049 df-rlim 15050 df-sum 15250 df-ef 15629 df-sin 15631 df-cos 15632 df-pi 15634 df-dvds 15816 df-gcd 16054 df-numer 16291 df-denom 16292 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-starv 16817 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ple 16822 df-ds 16824 df-unif 16825 df-hom 16826 df-cco 16827 df-rest 16927 df-topn 16928 df-0g 16946 df-gsum 16947 df-topgen 16948 df-pt 16949 df-prds 16952 df-xrs 17007 df-qtop 17012 df-imas 17013 df-xps 17015 df-mre 17089 df-mrc 17090 df-acs 17092 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-mulg 18489 df-cntz 18711 df-cmn 19172 df-psmet 20355 df-xmet 20356 df-met 20357 df-bl 20358 df-mopn 20359 df-fbas 20360 df-fg 20361 df-cnfld 20364 df-top 21791 df-topon 21808 df-topsp 21830 df-bases 21843 df-cld 21916 df-ntr 21917 df-cls 21918 df-nei 21995 df-lp 22033 df-perf 22034 df-cn 22124 df-cnp 22125 df-haus 22212 df-tx 22459 df-hmeo 22652 df-fil 22743 df-fm 22835 df-flim 22836 df-flf 22837 df-xms 23218 df-ms 23219 df-tms 23220 df-cncf 23775 df-limc 24763 df-dv 24764 df-log 25445 df-squarenn 40366 df-pell1qr 40367 df-pell14qr 40368 df-pell1234qr 40369 df-pellfund 40370 df-rmx 40427 df-rmy 40428 |
This theorem is referenced by: rmx0 40450 rmy0 40454 |
Copyright terms: Public domain | W3C validator |