Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxy0 Structured version   Visualization version   GIF version

Theorem rmxy0 41595
Description: Value of the X and Y sequences at 0. (Contributed by Stefan O'Rear, 22-Sep-2014.)
Assertion
Ref Expression
rmxy0 (𝐴 ∈ (ℤ‘2) → ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0))

Proof of Theorem rmxy0
StepHypRef Expression
1 0z 12565 . . . 4 0 ∈ ℤ
2 rmxyval 41587 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 0 ∈ ℤ) → ((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑0))
31, 2mpan2 690 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑0))
4 rmbaserp 41591 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℝ+)
54rpcnd 13014 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℂ)
65exp0d 14101 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑0) = 1)
7 rmspecpos 41588 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ+)
87rpcnd 13014 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℂ)
98sqrtcld 15380 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
109mul01d 11409 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((√‘((𝐴↑2) − 1)) · 0) = 0)
1110oveq2d 7420 . . . 4 (𝐴 ∈ (ℤ‘2) → (1 + ((√‘((𝐴↑2) − 1)) · 0)) = (1 + 0))
12 1p0e1 12332 . . . 4 (1 + 0) = 1
1311, 12eqtr2di 2790 . . 3 (𝐴 ∈ (ℤ‘2) → 1 = (1 + ((√‘((𝐴↑2) − 1)) · 0)))
143, 6, 133eqtrd 2777 . 2 (𝐴 ∈ (ℤ‘2) → ((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = (1 + ((√‘((𝐴↑2) − 1)) · 0)))
15 rmspecsqrtnq 41577 . . 3 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
16 nn0ssq 12937 . . . 4 0 ⊆ ℚ
17 frmx 41585 . . . . . 6 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
1817fovcl 7532 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 0 ∈ ℤ) → (𝐴 Xrm 0) ∈ ℕ0)
191, 18mpan2 690 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm 0) ∈ ℕ0)
2016, 19sselid 3979 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm 0) ∈ ℚ)
21 zssq 12936 . . . 4 ℤ ⊆ ℚ
22 frmy 41586 . . . . . 6 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2322fovcl 7532 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 0 ∈ ℤ) → (𝐴 Yrm 0) ∈ ℤ)
241, 23mpan2 690 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) ∈ ℤ)
2521, 24sselid 3979 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) ∈ ℚ)
26 1z 12588 . . . . 5 1 ∈ ℤ
2721, 26sselii 3978 . . . 4 1 ∈ ℚ
2827a1i 11 . . 3 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℚ)
2921, 1sselii 3978 . . . 4 0 ∈ ℚ
3029a1i 11 . . 3 (𝐴 ∈ (ℤ‘2) → 0 ∈ ℚ)
31 qirropth 41579 . . 3 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ ((𝐴 Xrm 0) ∈ ℚ ∧ (𝐴 Yrm 0) ∈ ℚ) ∧ (1 ∈ ℚ ∧ 0 ∈ ℚ)) → (((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = (1 + ((√‘((𝐴↑2) − 1)) · 0)) ↔ ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0)))
3215, 20, 25, 28, 30, 31syl122anc 1380 . 2 (𝐴 ∈ (ℤ‘2) → (((𝐴 Xrm 0) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 0))) = (1 + ((√‘((𝐴↑2) − 1)) · 0)) ↔ ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0)))
3314, 32mpbid 231 1 (𝐴 ∈ (ℤ‘2) → ((𝐴 Xrm 0) = 1 ∧ (𝐴 Yrm 0) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  cdif 3944  cfv 6540  (class class class)co 7404  cc 11104  0cc0 11106  1c1 11107   + caddc 11109   · cmul 11111  cmin 11440  2c2 12263  0cn0 12468  cz 12554  cuz 12818  cq 12928  cexp 14023  csqrt 15176   Xrm crmx 41571   Yrm crmy 41572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7665  df-om 7851  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-omul 8466  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-acn 9933  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-xnn0 12541  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ioc 13325  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-fac 14230  df-bc 14259  df-hash 14287  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15411  df-clim 15428  df-rlim 15429  df-sum 15629  df-ef 16007  df-sin 16009  df-cos 16010  df-pi 16012  df-dvds 16194  df-gcd 16432  df-numer 16667  df-denom 16668  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-xrs 17444  df-qtop 17449  df-imas 17450  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-mulg 18945  df-cntz 19175  df-cmn 19643  df-psmet 20921  df-xmet 20922  df-met 20923  df-bl 20924  df-mopn 20925  df-fbas 20926  df-fg 20927  df-cnfld 20930  df-top 22378  df-topon 22395  df-topsp 22417  df-bases 22431  df-cld 22505  df-ntr 22506  df-cls 22507  df-nei 22584  df-lp 22622  df-perf 22623  df-cn 22713  df-cnp 22714  df-haus 22801  df-tx 23048  df-hmeo 23241  df-fil 23332  df-fm 23424  df-flim 23425  df-flf 23426  df-xms 23808  df-ms 23809  df-tms 23810  df-cncf 24376  df-limc 25365  df-dv 25366  df-log 26047  df-squarenn 41512  df-pell1qr 41513  df-pell14qr 41514  df-pell1234qr 41515  df-pellfund 41516  df-rmx 41573  df-rmy 41574
This theorem is referenced by:  rmx0  41597  rmy0  41601
  Copyright terms: Public domain W3C validator