Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxynorm Structured version   Visualization version   GIF version

Theorem rmxynorm 41054
Description: The X and Y sequences define a solution to the corresponding Pell equation. (Contributed by Stefan O'Rear, 22-Sep-2014.)
Assertion
Ref Expression
rmxynorm ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁)↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = 1)

Proof of Theorem rmxynorm
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simpr 486 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
2 eqidd 2738 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm 𝑁) = (𝐴 Xrm 𝑁))
3 eqidd 2738 . . . 4 (𝑁 ∈ ℤ → (𝐴 Yrm 𝑁) = (𝐴 Yrm 𝑁))
42, 3anim12i 614 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) = (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝑁) = (𝐴 Yrm 𝑁)))
5 oveq2 7349 . . . . . 6 (𝑎 = 𝑁 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑁))
65eqeq2d 2748 . . . . 5 (𝑎 = 𝑁 → ((𝐴 Xrm 𝑁) = (𝐴 Xrm 𝑎) ↔ (𝐴 Xrm 𝑁) = (𝐴 Xrm 𝑁)))
7 oveq2 7349 . . . . . 6 (𝑎 = 𝑁 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑁))
87eqeq2d 2748 . . . . 5 (𝑎 = 𝑁 → ((𝐴 Yrm 𝑁) = (𝐴 Yrm 𝑎) ↔ (𝐴 Yrm 𝑁) = (𝐴 Yrm 𝑁)))
96, 8anbi12d 632 . . . 4 (𝑎 = 𝑁 → (((𝐴 Xrm 𝑁) = (𝐴 Xrm 𝑎) ∧ (𝐴 Yrm 𝑁) = (𝐴 Yrm 𝑎)) ↔ ((𝐴 Xrm 𝑁) = (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝑁) = (𝐴 Yrm 𝑁))))
109rspcev 3573 . . 3 ((𝑁 ∈ ℤ ∧ ((𝐴 Xrm 𝑁) = (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝑁) = (𝐴 Yrm 𝑁))) → ∃𝑎 ∈ ℤ ((𝐴 Xrm 𝑁) = (𝐴 Xrm 𝑎) ∧ (𝐴 Yrm 𝑁) = (𝐴 Yrm 𝑎)))
111, 4, 10syl2anc 585 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ ℤ ((𝐴 Xrm 𝑁) = (𝐴 Xrm 𝑎) ∧ (𝐴 Yrm 𝑁) = (𝐴 Yrm 𝑎)))
12 simpl 484 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ (ℤ‘2))
13 frmx 41049 . . . 4 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
1413fovcl 7468 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
15 frmy 41050 . . . 4 Yrm :((ℤ‘2) × ℤ)⟶ℤ
1615fovcl 7468 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
17 rmxycomplete 41053 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ (𝐴 Xrm 𝑁) ∈ ℕ0 ∧ (𝐴 Yrm 𝑁) ∈ ℤ) → ((((𝐴 Xrm 𝑁)↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = 1 ↔ ∃𝑎 ∈ ℤ ((𝐴 Xrm 𝑁) = (𝐴 Xrm 𝑎) ∧ (𝐴 Yrm 𝑁) = (𝐴 Yrm 𝑎))))
1812, 14, 16, 17syl3anc 1371 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((((𝐴 Xrm 𝑁)↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = 1 ↔ ∃𝑎 ∈ ℤ ((𝐴 Xrm 𝑁) = (𝐴 Xrm 𝑎) ∧ (𝐴 Yrm 𝑁) = (𝐴 Yrm 𝑎))))
1911, 18mpbird 257 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁)↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wcel 2106  wrex 3071  cfv 6483  (class class class)co 7341  1c1 10977   · cmul 10981  cmin 11310  2c2 12133  0cn0 12338  cz 12424  cuz 12687  cexp 13887   Xrm crmx 41035   Yrm crmy 41036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-inf2 9502  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053  ax-pre-sup 11054  ax-addf 11055  ax-mulf 11056
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4857  df-int 4899  df-iun 4947  df-iin 4948  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-se 5580  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-isom 6492  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7599  df-om 7785  df-1st 7903  df-2nd 7904  df-supp 8052  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-1o 8371  df-2o 8372  df-oadd 8375  df-omul 8376  df-er 8573  df-map 8692  df-pm 8693  df-ixp 8761  df-en 8809  df-dom 8810  df-sdom 8811  df-fin 8812  df-fsupp 9231  df-fi 9272  df-sup 9303  df-inf 9304  df-oi 9371  df-card 9800  df-acn 9803  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-div 11738  df-nn 12079  df-2 12141  df-3 12142  df-4 12143  df-5 12144  df-6 12145  df-7 12146  df-8 12147  df-9 12148  df-n0 12339  df-xnn0 12411  df-z 12425  df-dec 12543  df-uz 12688  df-q 12794  df-rp 12836  df-xneg 12953  df-xadd 12954  df-xmul 12955  df-ioo 13188  df-ioc 13189  df-ico 13190  df-icc 13191  df-fz 13345  df-fzo 13488  df-fl 13617  df-mod 13695  df-seq 13827  df-exp 13888  df-fac 14093  df-bc 14122  df-hash 14150  df-shft 14877  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-limsup 15279  df-clim 15296  df-rlim 15297  df-sum 15497  df-ef 15876  df-sin 15878  df-cos 15879  df-pi 15881  df-dvds 16063  df-gcd 16301  df-numer 16536  df-denom 16537  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulr 17073  df-starv 17074  df-sca 17075  df-vsca 17076  df-ip 17077  df-tset 17078  df-ple 17079  df-ds 17081  df-unif 17082  df-hom 17083  df-cco 17084  df-rest 17230  df-topn 17231  df-0g 17249  df-gsum 17250  df-topgen 17251  df-pt 17252  df-prds 17255  df-xrs 17310  df-qtop 17315  df-imas 17316  df-xps 17318  df-mre 17392  df-mrc 17393  df-acs 17395  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-submnd 18528  df-mulg 18797  df-cntz 19019  df-cmn 19483  df-psmet 20694  df-xmet 20695  df-met 20696  df-bl 20697  df-mopn 20698  df-fbas 20699  df-fg 20700  df-cnfld 20703  df-top 22148  df-topon 22165  df-topsp 22187  df-bases 22201  df-cld 22275  df-ntr 22276  df-cls 22277  df-nei 22354  df-lp 22392  df-perf 22393  df-cn 22483  df-cnp 22484  df-haus 22571  df-tx 22818  df-hmeo 23011  df-fil 23102  df-fm 23194  df-flim 23195  df-flf 23196  df-xms 23578  df-ms 23579  df-tms 23580  df-cncf 24146  df-limc 25135  df-dv 25136  df-log 25817  df-squarenn 40976  df-pell1qr 40977  df-pell14qr 40978  df-pell1234qr 40979  df-pellfund 40980  df-rmx 41037  df-rmy 41038
This theorem is referenced by:  rmxyneg  41056  rmxdbl  41075  jm2.19lem1  41125  jm2.27c  41143  rmxdiophlem  41151
  Copyright terms: Public domain W3C validator