| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptnn04ifc | Structured version Visualization version GIF version | ||
| Description: The function value of a mapping from the nonnegative integers with four distinct cases for the third case. (Contributed by AV, 10-Nov-2019.) |
| Ref | Expression |
|---|---|
| fvmptnn04if.g | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) |
| fvmptnn04if.s | ⊢ (𝜑 → 𝑆 ∈ ℕ) |
| fvmptnn04if.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| fvmptnn04ifc | ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptnn04if.g | . 2 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) | |
| 2 | fvmptnn04if.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ) | |
| 3 | 2 | 3ad2ant1 1133 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → 𝑆 ∈ ℕ) |
| 4 | fvmptnn04if.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 5 | 4 | 3ad2ant1 1133 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → 𝑁 ∈ ℕ0) |
| 6 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) | |
| 7 | nnne0 12181 | . . . . . . . . 9 ⊢ (𝑆 ∈ ℕ → 𝑆 ≠ 0) | |
| 8 | 7 | neneqd 2930 | . . . . . . . 8 ⊢ (𝑆 ∈ ℕ → ¬ 𝑆 = 0) |
| 9 | 2, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ¬ 𝑆 = 0) |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 𝑆) → ¬ 𝑆 = 0) |
| 11 | eqeq1 2733 | . . . . . . . 8 ⊢ (𝑁 = 𝑆 → (𝑁 = 0 ↔ 𝑆 = 0)) | |
| 12 | 11 | notbid 318 | . . . . . . 7 ⊢ (𝑁 = 𝑆 → (¬ 𝑁 = 0 ↔ ¬ 𝑆 = 0)) |
| 13 | 12 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 𝑆) → (¬ 𝑁 = 0 ↔ ¬ 𝑆 = 0)) |
| 14 | 10, 13 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 𝑆) → ¬ 𝑁 = 0) |
| 15 | 14 | 3adant3 1132 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → ¬ 𝑁 = 0) |
| 16 | 15 | pm2.21d 121 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → (𝑁 = 0 → ⦋𝑁 / 𝑛⦌𝐶 = ⦋𝑁 / 𝑛⦌𝐴)) |
| 17 | 16 | imp 406 | . 2 ⊢ (((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) ∧ 𝑁 = 0) → ⦋𝑁 / 𝑛⦌𝐶 = ⦋𝑁 / 𝑛⦌𝐴) |
| 18 | 4 | nn0red 12465 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 19 | 2 | nnred 12162 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ ℝ) |
| 20 | 18, 19 | lttri3d 11275 | . . . . . . 7 ⊢ (𝜑 → (𝑁 = 𝑆 ↔ (¬ 𝑁 < 𝑆 ∧ ¬ 𝑆 < 𝑁))) |
| 21 | 20 | simprbda 498 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 𝑆) → ¬ 𝑁 < 𝑆) |
| 22 | 21 | pm2.21d 121 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 𝑆) → (𝑁 < 𝑆 → ⦋𝑁 / 𝑛⦌𝐶 = ⦋𝑁 / 𝑛⦌𝐵)) |
| 23 | 22 | 3adant3 1132 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → (𝑁 < 𝑆 → ⦋𝑁 / 𝑛⦌𝐶 = ⦋𝑁 / 𝑛⦌𝐵)) |
| 24 | 23 | a1d 25 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → (0 < 𝑁 → (𝑁 < 𝑆 → ⦋𝑁 / 𝑛⦌𝐶 = ⦋𝑁 / 𝑛⦌𝐵))) |
| 25 | 24 | 3imp 1110 | . 2 ⊢ (((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) ∧ 0 < 𝑁 ∧ 𝑁 < 𝑆) → ⦋𝑁 / 𝑛⦌𝐶 = ⦋𝑁 / 𝑛⦌𝐵) |
| 26 | eqidd 2730 | . 2 ⊢ (((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) ∧ 𝑁 = 𝑆) → ⦋𝑁 / 𝑛⦌𝐶 = ⦋𝑁 / 𝑛⦌𝐶) | |
| 27 | 20 | simplbda 499 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 𝑆) → ¬ 𝑆 < 𝑁) |
| 28 | 27 | 3adant3 1132 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → ¬ 𝑆 < 𝑁) |
| 29 | 28 | pm2.21d 121 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → (𝑆 < 𝑁 → ⦋𝑁 / 𝑛⦌𝐶 = ⦋𝑁 / 𝑛⦌𝐷)) |
| 30 | 29 | imp 406 | . 2 ⊢ (((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) ∧ 𝑆 < 𝑁) → ⦋𝑁 / 𝑛⦌𝐶 = ⦋𝑁 / 𝑛⦌𝐷) |
| 31 | 1, 3, 5, 6, 17, 25, 26, 30 | fvmptnn04if 22753 | 1 ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⦋csb 3853 ifcif 4478 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6486 0cc0 11028 < clt 11168 ℕcn 12147 ℕ0cn0 12403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-n0 12404 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |