| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptnn04ifc | Structured version Visualization version GIF version | ||
| Description: The function value of a mapping from the nonnegative integers with four distinct cases for the third case. (Contributed by AV, 10-Nov-2019.) |
| Ref | Expression |
|---|---|
| fvmptnn04if.g | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) |
| fvmptnn04if.s | ⊢ (𝜑 → 𝑆 ∈ ℕ) |
| fvmptnn04if.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| fvmptnn04ifc | ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptnn04if.g | . 2 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) | |
| 2 | fvmptnn04if.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ) | |
| 3 | 2 | 3ad2ant1 1133 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → 𝑆 ∈ ℕ) |
| 4 | fvmptnn04if.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 5 | 4 | 3ad2ant1 1133 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → 𝑁 ∈ ℕ0) |
| 6 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) | |
| 7 | nnne0 12283 | . . . . . . . . 9 ⊢ (𝑆 ∈ ℕ → 𝑆 ≠ 0) | |
| 8 | 7 | neneqd 2936 | . . . . . . . 8 ⊢ (𝑆 ∈ ℕ → ¬ 𝑆 = 0) |
| 9 | 2, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ¬ 𝑆 = 0) |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 𝑆) → ¬ 𝑆 = 0) |
| 11 | eqeq1 2738 | . . . . . . . 8 ⊢ (𝑁 = 𝑆 → (𝑁 = 0 ↔ 𝑆 = 0)) | |
| 12 | 11 | notbid 318 | . . . . . . 7 ⊢ (𝑁 = 𝑆 → (¬ 𝑁 = 0 ↔ ¬ 𝑆 = 0)) |
| 13 | 12 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 𝑆) → (¬ 𝑁 = 0 ↔ ¬ 𝑆 = 0)) |
| 14 | 10, 13 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 𝑆) → ¬ 𝑁 = 0) |
| 15 | 14 | 3adant3 1132 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → ¬ 𝑁 = 0) |
| 16 | 15 | pm2.21d 121 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → (𝑁 = 0 → ⦋𝑁 / 𝑛⦌𝐶 = ⦋𝑁 / 𝑛⦌𝐴)) |
| 17 | 16 | imp 406 | . 2 ⊢ (((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) ∧ 𝑁 = 0) → ⦋𝑁 / 𝑛⦌𝐶 = ⦋𝑁 / 𝑛⦌𝐴) |
| 18 | 4 | nn0red 12572 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 19 | 2 | nnred 12264 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ ℝ) |
| 20 | 18, 19 | lttri3d 11384 | . . . . . . 7 ⊢ (𝜑 → (𝑁 = 𝑆 ↔ (¬ 𝑁 < 𝑆 ∧ ¬ 𝑆 < 𝑁))) |
| 21 | 20 | simprbda 498 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 𝑆) → ¬ 𝑁 < 𝑆) |
| 22 | 21 | pm2.21d 121 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 𝑆) → (𝑁 < 𝑆 → ⦋𝑁 / 𝑛⦌𝐶 = ⦋𝑁 / 𝑛⦌𝐵)) |
| 23 | 22 | 3adant3 1132 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → (𝑁 < 𝑆 → ⦋𝑁 / 𝑛⦌𝐶 = ⦋𝑁 / 𝑛⦌𝐵)) |
| 24 | 23 | a1d 25 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → (0 < 𝑁 → (𝑁 < 𝑆 → ⦋𝑁 / 𝑛⦌𝐶 = ⦋𝑁 / 𝑛⦌𝐵))) |
| 25 | 24 | 3imp 1110 | . 2 ⊢ (((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) ∧ 0 < 𝑁 ∧ 𝑁 < 𝑆) → ⦋𝑁 / 𝑛⦌𝐶 = ⦋𝑁 / 𝑛⦌𝐵) |
| 26 | eqidd 2735 | . 2 ⊢ (((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) ∧ 𝑁 = 𝑆) → ⦋𝑁 / 𝑛⦌𝐶 = ⦋𝑁 / 𝑛⦌𝐶) | |
| 27 | 20 | simplbda 499 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 𝑆) → ¬ 𝑆 < 𝑁) |
| 28 | 27 | 3adant3 1132 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → ¬ 𝑆 < 𝑁) |
| 29 | 28 | pm2.21d 121 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → (𝑆 < 𝑁 → ⦋𝑁 / 𝑛⦌𝐶 = ⦋𝑁 / 𝑛⦌𝐷)) |
| 30 | 29 | imp 406 | . 2 ⊢ (((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) ∧ 𝑆 < 𝑁) → ⦋𝑁 / 𝑛⦌𝐶 = ⦋𝑁 / 𝑛⦌𝐷) |
| 31 | 1, 3, 5, 6, 17, 25, 26, 30 | fvmptnn04if 22822 | 1 ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ⦋csb 3881 ifcif 4507 class class class wbr 5125 ↦ cmpt 5207 ‘cfv 6542 0cc0 11138 < clt 11278 ℕcn 12249 ℕ0cn0 12510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-n0 12511 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |