Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzadd2d Structured version   Visualization version   GIF version

Theorem fzadd2d 41960
Description: Membership of a sum in a finite interval of integers, a deduction version. (Contributed by metakunt, 10-May-2024.)
Hypotheses
Ref Expression
fzadd2d.1 (𝜑𝑀 ∈ ℤ)
fzadd2d.2 (𝜑𝑁 ∈ ℤ)
fzadd2d.3 (𝜑𝑂 ∈ ℤ)
fzadd2d.4 (𝜑𝑃 ∈ ℤ)
fzadd2d.5 (𝜑𝐽 ∈ (𝑀...𝑁))
fzadd2d.6 (𝜑𝐾 ∈ (𝑂...𝑃))
fzadd2d.7 (𝜑𝑄 = (𝑀 + 𝑂))
fzadd2d.8 (𝜑𝑅 = (𝑁 + 𝑃))
Assertion
Ref Expression
fzadd2d (𝜑 → (𝐽 + 𝐾) ∈ (𝑄...𝑅))

Proof of Theorem fzadd2d
StepHypRef Expression
1 fzadd2d.5 . . . 4 (𝜑𝐽 ∈ (𝑀...𝑁))
2 fzadd2d.6 . . . 4 (𝜑𝐾 ∈ (𝑂...𝑃))
31, 2jca 511 . . 3 (𝜑 → (𝐽 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑂...𝑃)))
4 fzadd2d.1 . . . . . 6 (𝜑𝑀 ∈ ℤ)
5 fzadd2d.2 . . . . . 6 (𝜑𝑁 ∈ ℤ)
64, 5jca 511 . . . . 5 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
7 fzadd2d.3 . . . . . 6 (𝜑𝑂 ∈ ℤ)
8 fzadd2d.4 . . . . . 6 (𝜑𝑃 ∈ ℤ)
97, 8jca 511 . . . . 5 (𝜑 → (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ))
106, 9jca 511 . . . 4 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)))
11 fzadd2 13596 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑂...𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))
1210, 11syl 17 . . 3 (𝜑 → ((𝐽 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑂...𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))
133, 12mpd 15 . 2 (𝜑 → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)))
14 fzadd2d.7 . . 3 (𝜑𝑄 = (𝑀 + 𝑂))
15 fzadd2d.8 . . 3 (𝜑𝑅 = (𝑁 + 𝑃))
1614, 15oveq12d 7449 . 2 (𝜑 → (𝑄...𝑅) = ((𝑀 + 𝑂)...(𝑁 + 𝑃)))
1713, 16eleqtrrd 2842 1 (𝜑 → (𝐽 + 𝐾) ∈ (𝑄...𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  (class class class)co 7431   + caddc 11156  cz 12611  ...cfz 13544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-fz 13545
This theorem is referenced by:  lcmineqlem4  42014  metakunt15  42201  metakunt16  42202
  Copyright terms: Public domain W3C validator