![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzadd2d | Structured version Visualization version GIF version |
Description: Membership of a sum in a finite interval of integers, a deduction version. (Contributed by metakunt, 10-May-2024.) |
Ref | Expression |
---|---|
fzadd2d.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
fzadd2d.2 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
fzadd2d.3 | ⊢ (𝜑 → 𝑂 ∈ ℤ) |
fzadd2d.4 | ⊢ (𝜑 → 𝑃 ∈ ℤ) |
fzadd2d.5 | ⊢ (𝜑 → 𝐽 ∈ (𝑀...𝑁)) |
fzadd2d.6 | ⊢ (𝜑 → 𝐾 ∈ (𝑂...𝑃)) |
fzadd2d.7 | ⊢ (𝜑 → 𝑄 = (𝑀 + 𝑂)) |
fzadd2d.8 | ⊢ (𝜑 → 𝑅 = (𝑁 + 𝑃)) |
Ref | Expression |
---|---|
fzadd2d | ⊢ (𝜑 → (𝐽 + 𝐾) ∈ (𝑄...𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzadd2d.5 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (𝑀...𝑁)) | |
2 | fzadd2d.6 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (𝑂...𝑃)) | |
3 | 1, 2 | jca 511 | . . 3 ⊢ (𝜑 → (𝐽 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑂...𝑃))) |
4 | fzadd2d.1 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | fzadd2d.2 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
6 | 4, 5 | jca 511 | . . . . 5 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
7 | fzadd2d.3 | . . . . . 6 ⊢ (𝜑 → 𝑂 ∈ ℤ) | |
8 | fzadd2d.4 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℤ) | |
9 | 7, 8 | jca 511 | . . . . 5 ⊢ (𝜑 → (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) |
10 | 6, 9 | jca 511 | . . . 4 ⊢ (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ))) |
11 | fzadd2 13539 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑂...𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)))) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐽 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑂...𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)))) |
13 | 3, 12 | mpd 15 | . 2 ⊢ (𝜑 → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))) |
14 | fzadd2d.7 | . . 3 ⊢ (𝜑 → 𝑄 = (𝑀 + 𝑂)) | |
15 | fzadd2d.8 | . . 3 ⊢ (𝜑 → 𝑅 = (𝑁 + 𝑃)) | |
16 | 14, 15 | oveq12d 7422 | . 2 ⊢ (𝜑 → (𝑄...𝑅) = ((𝑀 + 𝑂)...(𝑁 + 𝑃))) |
17 | 13, 16 | eleqtrrd 2830 | 1 ⊢ (𝜑 → (𝐽 + 𝐾) ∈ (𝑄...𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 (class class class)co 7404 + caddc 11112 ℤcz 12559 ...cfz 13487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-n0 12474 df-z 12560 df-fz 13488 |
This theorem is referenced by: lcmineqlem4 41412 metakunt15 41542 metakunt16 41543 |
Copyright terms: Public domain | W3C validator |