![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > irradd | Structured version Visualization version GIF version |
Description: The sum of an irrational number and a rational number is irrational. (Contributed by NM, 7-Nov-2008.) |
Ref | Expression |
---|---|
irradd | ⊢ ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℚ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3920 | . . 3 ⊢ (𝐴 ∈ (ℝ ∖ ℚ) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ)) | |
2 | qre 12877 | . . . . . 6 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℝ) | |
3 | readdcl 11133 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
4 | 2, 3 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℝ) |
5 | 4 | adantlr 713 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℝ) |
6 | qsubcl 12892 | . . . . . . . . . . 11 ⊢ (((𝐴 + 𝐵) ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((𝐴 + 𝐵) − 𝐵) ∈ ℚ) | |
7 | 6 | expcom 414 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℚ → ((𝐴 + 𝐵) ∈ ℚ → ((𝐴 + 𝐵) − 𝐵) ∈ ℚ)) |
8 | 7 | adantl 482 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ) → ((𝐴 + 𝐵) ∈ ℚ → ((𝐴 + 𝐵) − 𝐵) ∈ ℚ)) |
9 | recn 11140 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
10 | qcn 12887 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℂ) | |
11 | pncan 11406 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) | |
12 | 9, 10, 11 | syl2an 596 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
13 | 12 | eleq1d 2822 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ) → (((𝐴 + 𝐵) − 𝐵) ∈ ℚ ↔ 𝐴 ∈ ℚ)) |
14 | 8, 13 | sylibd 238 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ) → ((𝐴 + 𝐵) ∈ ℚ → 𝐴 ∈ ℚ)) |
15 | 14 | con3d 152 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ) → (¬ 𝐴 ∈ ℚ → ¬ (𝐴 + 𝐵) ∈ ℚ)) |
16 | 15 | ex 413 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ ℚ → (¬ 𝐴 ∈ ℚ → ¬ (𝐴 + 𝐵) ∈ ℚ))) |
17 | 16 | com23 86 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℚ → (𝐵 ∈ ℚ → ¬ (𝐴 + 𝐵) ∈ ℚ))) |
18 | 17 | imp31 418 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ 𝐵 ∈ ℚ) → ¬ (𝐴 + 𝐵) ∈ ℚ) |
19 | 5, 18 | jca 512 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ 𝐵 ∈ ℚ) → ((𝐴 + 𝐵) ∈ ℝ ∧ ¬ (𝐴 + 𝐵) ∈ ℚ)) |
20 | 1, 19 | sylanb 581 | . 2 ⊢ ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ) → ((𝐴 + 𝐵) ∈ ℝ ∧ ¬ (𝐴 + 𝐵) ∈ ℚ)) |
21 | eldif 3920 | . 2 ⊢ ((𝐴 + 𝐵) ∈ (ℝ ∖ ℚ) ↔ ((𝐴 + 𝐵) ∈ ℝ ∧ ¬ (𝐴 + 𝐵) ∈ ℚ)) | |
22 | 20, 21 | sylibr 233 | 1 ⊢ ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℚ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∖ cdif 3907 (class class class)co 7356 ℂcc 11048 ℝcr 11049 + caddc 11053 − cmin 11384 ℚcq 12872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7671 ax-resscn 11107 ax-1cn 11108 ax-icn 11109 ax-addcl 11110 ax-addrcl 11111 ax-mulcl 11112 ax-mulrcl 11113 ax-mulcom 11114 ax-addass 11115 ax-mulass 11116 ax-distr 11117 ax-i2m1 11118 ax-1ne0 11119 ax-1rid 11120 ax-rnegex 11121 ax-rrecex 11122 ax-cnre 11123 ax-pre-lttri 11124 ax-pre-lttrn 11125 ax-pre-ltadd 11126 ax-pre-mulgt0 11127 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7312 df-ov 7359 df-oprab 7360 df-mpo 7361 df-om 7802 df-1st 7920 df-2nd 7921 df-frecs 8211 df-wrecs 8242 df-recs 8316 df-rdg 8355 df-er 8647 df-en 8883 df-dom 8884 df-sdom 8885 df-pnf 11190 df-mnf 11191 df-xr 11192 df-ltxr 11193 df-le 11194 df-sub 11386 df-neg 11387 df-div 11812 df-nn 12153 df-n0 12413 df-z 12499 df-q 12873 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |