![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > irradd | Structured version Visualization version GIF version |
Description: The sum of an irrational number and a rational number is irrational. (Contributed by NM, 7-Nov-2008.) |
Ref | Expression |
---|---|
irradd | ⊢ ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℚ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3841 | . . 3 ⊢ (𝐴 ∈ (ℝ ∖ ℚ) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ)) | |
2 | qre 12173 | . . . . . 6 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℝ) | |
3 | readdcl 10424 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
4 | 2, 3 | sylan2 584 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℝ) |
5 | 4 | adantlr 703 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℝ) |
6 | qsubcl 12188 | . . . . . . . . . . 11 ⊢ (((𝐴 + 𝐵) ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((𝐴 + 𝐵) − 𝐵) ∈ ℚ) | |
7 | 6 | expcom 406 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℚ → ((𝐴 + 𝐵) ∈ ℚ → ((𝐴 + 𝐵) − 𝐵) ∈ ℚ)) |
8 | 7 | adantl 474 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ) → ((𝐴 + 𝐵) ∈ ℚ → ((𝐴 + 𝐵) − 𝐵) ∈ ℚ)) |
9 | recn 10431 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
10 | qcn 12183 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℂ) | |
11 | pncan 10698 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) | |
12 | 9, 10, 11 | syl2an 587 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
13 | 12 | eleq1d 2852 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ) → (((𝐴 + 𝐵) − 𝐵) ∈ ℚ ↔ 𝐴 ∈ ℚ)) |
14 | 8, 13 | sylibd 231 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ) → ((𝐴 + 𝐵) ∈ ℚ → 𝐴 ∈ ℚ)) |
15 | 14 | con3d 150 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ) → (¬ 𝐴 ∈ ℚ → ¬ (𝐴 + 𝐵) ∈ ℚ)) |
16 | 15 | ex 405 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ ℚ → (¬ 𝐴 ∈ ℚ → ¬ (𝐴 + 𝐵) ∈ ℚ))) |
17 | 16 | com23 86 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℚ → (𝐵 ∈ ℚ → ¬ (𝐴 + 𝐵) ∈ ℚ))) |
18 | 17 | imp31 410 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ 𝐵 ∈ ℚ) → ¬ (𝐴 + 𝐵) ∈ ℚ) |
19 | 5, 18 | jca 504 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ 𝐵 ∈ ℚ) → ((𝐴 + 𝐵) ∈ ℝ ∧ ¬ (𝐴 + 𝐵) ∈ ℚ)) |
20 | 1, 19 | sylanb 573 | . 2 ⊢ ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ) → ((𝐴 + 𝐵) ∈ ℝ ∧ ¬ (𝐴 + 𝐵) ∈ ℚ)) |
21 | eldif 3841 | . 2 ⊢ ((𝐴 + 𝐵) ∈ (ℝ ∖ ℚ) ↔ ((𝐴 + 𝐵) ∈ ℝ ∧ ¬ (𝐴 + 𝐵) ∈ ℚ)) | |
22 | 20, 21 | sylibr 226 | 1 ⊢ ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℚ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ∖ cdif 3828 (class class class)co 6982 ℂcc 10339 ℝcr 10340 + caddc 10344 − cmin 10676 ℚcq 12168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 ax-resscn 10398 ax-1cn 10399 ax-icn 10400 ax-addcl 10401 ax-addrcl 10402 ax-mulcl 10403 ax-mulrcl 10404 ax-mulcom 10405 ax-addass 10406 ax-mulass 10407 ax-distr 10408 ax-i2m1 10409 ax-1ne0 10410 ax-1rid 10411 ax-rnegex 10412 ax-rrecex 10413 ax-cnre 10414 ax-pre-lttri 10415 ax-pre-lttrn 10416 ax-pre-ltadd 10417 ax-pre-mulgt0 10418 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-tp 4449 df-op 4451 df-uni 4718 df-iun 4799 df-br 4935 df-opab 4997 df-mpt 5014 df-tr 5036 df-id 5316 df-eprel 5321 df-po 5330 df-so 5331 df-fr 5370 df-we 5372 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-pred 5991 df-ord 6037 df-on 6038 df-lim 6039 df-suc 6040 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-riota 6943 df-ov 6985 df-oprab 6986 df-mpo 6987 df-om 7403 df-1st 7507 df-2nd 7508 df-wrecs 7756 df-recs 7818 df-rdg 7856 df-er 8095 df-en 8313 df-dom 8314 df-sdom 8315 df-pnf 10482 df-mnf 10483 df-xr 10484 df-ltxr 10485 df-le 10486 df-sub 10678 df-neg 10679 df-div 11105 df-nn 11446 df-n0 11714 df-z 11800 df-q 12169 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |