MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qre Structured version   Visualization version   GIF version

Theorem qre 12202
Description: A rational number is a real number. (Contributed by NM, 14-Nov-2002.)
Assertion
Ref Expression
qre (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)

Proof of Theorem qre
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 12199 . 2 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
2 zre 11833 . . . . 5 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
3 nnre 11493 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
4 nnne0 11519 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
53, 4jca 512 . . . . 5 (𝑦 ∈ ℕ → (𝑦 ∈ ℝ ∧ 𝑦 ≠ 0))
6 redivcl 11207 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑦 ≠ 0) → (𝑥 / 𝑦) ∈ ℝ)
763expb 1113 . . . . 5 ((𝑥 ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 𝑦 ≠ 0)) → (𝑥 / 𝑦) ∈ ℝ)
82, 5, 7syl2an 595 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℝ)
9 eleq1 2870 . . . 4 (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℝ ↔ (𝑥 / 𝑦) ∈ ℝ))
108, 9syl5ibrcom 248 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ))
1110rexlimivv 3255 . 2 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ)
121, 11sylbi 218 1 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1522  wcel 2081  wne 2984  wrex 3106  (class class class)co 7016  cr 10382  0cc0 10383   / cdiv 11145  cn 11486  cz 11829  cq 12197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-z 11830  df-q 12198
This theorem is referenced by:  qssre  12208  irradd  12222  irrmul  12223  qbtwnxr  12443  qsqueeze  12444  qextltlem  12445  xralrple  12448  ixxub  12609  ixxlb  12610  ioo0  12613  ico0  12634  ioc0  12635  qnumgt0  15919  pcabs  16040  blssps  22717  blss  22718  blcld  22798  qdensere  23061  nmoleub2lem3  23402  mbfaddlem  23944  dvlip2  24275  itgsubst  24329  aalioulem2  24605  aalioulem4  24607  aalioulem5  24608  aalioulem6  24609  aaliou  24610  aaliou2b  24613  ipasslem8  28305  itg2gt0cn  34478  irrapxlem5  38908  rpnnen3lem  39113  qred  41198  qinioo  41353  qelioo  41364  qndenserrnbllem  42121  smfaddlem1  42581  smfaddlem2  42582
  Copyright terms: Public domain W3C validator