![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qre | Structured version Visualization version GIF version |
Description: A rational number is a real number. (Contributed by NM, 14-Nov-2002.) |
Ref | Expression |
---|---|
qre | ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elq 12940 | . 2 ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | |
2 | zre 12568 | . . . . 5 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
3 | nnre 12225 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℝ) | |
4 | nnne0 12252 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 ≠ 0) | |
5 | 3, 4 | jca 510 | . . . . 5 ⊢ (𝑦 ∈ ℕ → (𝑦 ∈ ℝ ∧ 𝑦 ≠ 0)) |
6 | redivcl 11939 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑦 ≠ 0) → (𝑥 / 𝑦) ∈ ℝ) | |
7 | 6 | 3expb 1118 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 𝑦 ≠ 0)) → (𝑥 / 𝑦) ∈ ℝ) |
8 | 2, 5, 7 | syl2an 594 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℝ) |
9 | eleq1 2819 | . . . 4 ⊢ (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℝ ↔ (𝑥 / 𝑦) ∈ ℝ)) | |
10 | 8, 9 | syl5ibrcom 246 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ)) |
11 | 10 | rexlimivv 3197 | . 2 ⊢ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ) |
12 | 1, 11 | sylbi 216 | 1 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ≠ wne 2938 ∃wrex 3068 (class class class)co 7413 ℝcr 11113 0cc0 11114 / cdiv 11877 ℕcn 12218 ℤcz 12564 ℚcq 12938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-nn 12219 df-z 12565 df-q 12939 |
This theorem is referenced by: qred 12945 qssre 12949 irradd 12963 irrmul 12964 qbtwnxr 13185 qsqueeze 13186 qextltlem 13187 xralrple 13190 ixxub 13351 ixxlb 13352 ioo0 13355 ico0 13376 ioc0 13377 qnumgt0 16692 pcabs 16814 blssps 24152 blss 24153 blcld 24236 qdensere 24508 nmoleub2lem3 24864 mbfaddlem 25411 dvlip2 25746 itgsubst 25800 aalioulem2 26080 aalioulem4 26082 aalioulem5 26083 aalioulem6 26084 aaliou 26085 aaliou2b 26088 ipasslem8 30355 irrdifflemf 36511 itg2gt0cn 36848 3cubeslem1 41726 3cubeslem2 41727 3cubeslem3r 41729 3cubeslem4 41731 irrapxlem5 41868 rpnnen3lem 42074 qinioo 44548 qelioo 44559 qndenserrnbllem 45310 smfaddlem1 45779 smfaddlem2 45780 |
Copyright terms: Public domain | W3C validator |