MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qre Structured version   Visualization version   GIF version

Theorem qre 12943
Description: A rational number is a real number. (Contributed by NM, 14-Nov-2002.)
Assertion
Ref Expression
qre (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)

Proof of Theorem qre
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 12940 . 2 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
2 zre 12568 . . . . 5 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
3 nnre 12225 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
4 nnne0 12252 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
53, 4jca 510 . . . . 5 (𝑦 ∈ ℕ → (𝑦 ∈ ℝ ∧ 𝑦 ≠ 0))
6 redivcl 11939 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑦 ≠ 0) → (𝑥 / 𝑦) ∈ ℝ)
763expb 1118 . . . . 5 ((𝑥 ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 𝑦 ≠ 0)) → (𝑥 / 𝑦) ∈ ℝ)
82, 5, 7syl2an 594 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℝ)
9 eleq1 2819 . . . 4 (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℝ ↔ (𝑥 / 𝑦) ∈ ℝ))
108, 9syl5ibrcom 246 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ))
1110rexlimivv 3197 . 2 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ)
121, 11sylbi 216 1 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  wne 2938  wrex 3068  (class class class)co 7413  cr 11113  0cc0 11114   / cdiv 11877  cn 12218  cz 12564  cq 12938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11256  df-mnf 11257  df-xr 11258  df-ltxr 11259  df-le 11260  df-sub 11452  df-neg 11453  df-div 11878  df-nn 12219  df-z 12565  df-q 12939
This theorem is referenced by:  qred  12945  qssre  12949  irradd  12963  irrmul  12964  qbtwnxr  13185  qsqueeze  13186  qextltlem  13187  xralrple  13190  ixxub  13351  ixxlb  13352  ioo0  13355  ico0  13376  ioc0  13377  qnumgt0  16692  pcabs  16814  blssps  24152  blss  24153  blcld  24236  qdensere  24508  nmoleub2lem3  24864  mbfaddlem  25411  dvlip2  25746  itgsubst  25800  aalioulem2  26080  aalioulem4  26082  aalioulem5  26083  aalioulem6  26084  aaliou  26085  aaliou2b  26088  ipasslem8  30355  irrdifflemf  36511  itg2gt0cn  36848  3cubeslem1  41726  3cubeslem2  41727  3cubeslem3r  41729  3cubeslem4  41731  irrapxlem5  41868  rpnnen3lem  42074  qinioo  44548  qelioo  44559  qndenserrnbllem  45310  smfaddlem1  45779  smfaddlem2  45780
  Copyright terms: Public domain W3C validator