MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsubadd2d Structured version   Visualization version   GIF version

Theorem ltsubadd2d 11843
Description: 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
ltadd1d.3 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
ltsubadd2d (𝜑 → ((𝐴𝐵) < 𝐶𝐴 < (𝐵 + 𝐶)))

Proof of Theorem ltsubadd2d
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnegd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 ltadd1d.3 . 2 (𝜑𝐶 ∈ ℝ)
4 ltsubadd2 11716 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵) < 𝐶𝐴 < (𝐵 + 𝐶)))
51, 2, 3, 4syl3anc 1372 1 (𝜑 → ((𝐴𝐵) < 𝐶𝐴 < (𝐵 + 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2107   class class class wbr 5123  (class class class)co 7413  cr 11136   + caddc 11140   < clt 11277  cmin 11474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-po 5572  df-so 5573  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-ltxr 11282  df-sub 11476  df-neg 11477
This theorem is referenced by:  subfzo0  13810  ccatrn  14610  cshwidxmod  14824  mulcn2  15615  reccn2  15616  rlimo1  15636  nrginvrcnlem  24649  ivthlem2  25424  itg2cnlem2  25734  dvferm1lem  25959  dvcvx  25996  ply1divex  26113  cxpcn3lem  26727  atantan  26903  lgamucov  27018  lgsquadlem2  27362  posbezout  42076  liminflimsupclim  45794  ioodvbdlimc1lem2  45919  fourierdlem82  46175  ioorrnopnlem  46291  sge0gtfsumgt  46430  smflimlem4  46761  ltsubsubb  48405  nnpw2pmod  48477
  Copyright terms: Public domain W3C validator