Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnpw2pmod Structured version   Visualization version   GIF version

Theorem nnpw2pmod 48572
Description: Every positive integer can be represented as the sum of a power of 2 and a "remainder" less than the power. (Contributed by AV, 31-May-2020.)
Assertion
Ref Expression
nnpw2pmod (𝑁 ∈ ℕ → 𝑁 = ((2↑((#b𝑁) − 1)) + (𝑁 mod (2↑((#b𝑁) − 1)))))

Proof of Theorem nnpw2pmod
StepHypRef Expression
1 nnre 12193 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2 2nn 12259 . . . . . . . 8 2 ∈ ℕ
32a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℕ)
4 blennnelnn 48565 . . . . . . . 8 (𝑁 ∈ ℕ → (#b𝑁) ∈ ℕ)
5 nnm1nn0 12483 . . . . . . . 8 ((#b𝑁) ∈ ℕ → ((#b𝑁) − 1) ∈ ℕ0)
64, 5syl 17 . . . . . . 7 (𝑁 ∈ ℕ → ((#b𝑁) − 1) ∈ ℕ0)
73, 6nnexpcld 14210 . . . . . 6 (𝑁 ∈ ℕ → (2↑((#b𝑁) − 1)) ∈ ℕ)
87nnrpd 12993 . . . . 5 (𝑁 ∈ ℕ → (2↑((#b𝑁) − 1)) ∈ ℝ+)
9 modeqmodmin 13906 . . . . 5 ((𝑁 ∈ ℝ ∧ (2↑((#b𝑁) − 1)) ∈ ℝ+) → (𝑁 mod (2↑((#b𝑁) − 1))) = ((𝑁 − (2↑((#b𝑁) − 1))) mod (2↑((#b𝑁) − 1))))
101, 8, 9syl2anc 584 . . . 4 (𝑁 ∈ ℕ → (𝑁 mod (2↑((#b𝑁) − 1))) = ((𝑁 − (2↑((#b𝑁) − 1))) mod (2↑((#b𝑁) − 1))))
117nnred 12201 . . . . . 6 (𝑁 ∈ ℕ → (2↑((#b𝑁) − 1)) ∈ ℝ)
121, 11resubcld 11606 . . . . 5 (𝑁 ∈ ℕ → (𝑁 − (2↑((#b𝑁) − 1))) ∈ ℝ)
13 nnpw2blen 48569 . . . . . 6 (𝑁 ∈ ℕ → ((2↑((#b𝑁) − 1)) ≤ 𝑁𝑁 < (2↑(#b𝑁))))
141, 11subge0d 11768 . . . . . . 7 (𝑁 ∈ ℕ → (0 ≤ (𝑁 − (2↑((#b𝑁) − 1))) ↔ (2↑((#b𝑁) − 1)) ≤ 𝑁))
151, 11, 11ltsubadd2d 11776 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 − (2↑((#b𝑁) − 1))) < (2↑((#b𝑁) − 1)) ↔ 𝑁 < ((2↑((#b𝑁) − 1)) + (2↑((#b𝑁) − 1)))))
16 2cn 12261 . . . . . . . . . . . 12 2 ∈ ℂ
17 exp1 14032 . . . . . . . . . . . . 13 (2 ∈ ℂ → (2↑1) = 2)
1817eqcomd 2735 . . . . . . . . . . . 12 (2 ∈ ℂ → 2 = (2↑1))
1916, 18mp1i 13 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 = (2↑1))
2019oveq1d 7402 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 · (2↑((#b𝑁) − 1))) = ((2↑1) · (2↑((#b𝑁) − 1))))
217nncnd 12202 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2↑((#b𝑁) − 1)) ∈ ℂ)
22212timesd 12425 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 · (2↑((#b𝑁) − 1))) = ((2↑((#b𝑁) − 1)) + (2↑((#b𝑁) − 1))))
2316a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 2 ∈ ℂ)
24 1nn0 12458 . . . . . . . . . . . . 13 1 ∈ ℕ0
2524a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 1 ∈ ℕ0)
2623, 6, 25expaddd 14113 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2↑(1 + ((#b𝑁) − 1))) = ((2↑1) · (2↑((#b𝑁) − 1))))
27 1cnd 11169 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 1 ∈ ℂ)
284nncnd 12202 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (#b𝑁) ∈ ℂ)
2927, 28pncan3d 11536 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (1 + ((#b𝑁) − 1)) = (#b𝑁))
3029oveq2d 7403 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2↑(1 + ((#b𝑁) − 1))) = (2↑(#b𝑁)))
3126, 30eqtr3d 2766 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((2↑1) · (2↑((#b𝑁) − 1))) = (2↑(#b𝑁)))
3220, 22, 313eqtr3d 2772 . . . . . . . . 9 (𝑁 ∈ ℕ → ((2↑((#b𝑁) − 1)) + (2↑((#b𝑁) − 1))) = (2↑(#b𝑁)))
3332breq2d 5119 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 < ((2↑((#b𝑁) − 1)) + (2↑((#b𝑁) − 1))) ↔ 𝑁 < (2↑(#b𝑁))))
3415, 33bitrd 279 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 − (2↑((#b𝑁) − 1))) < (2↑((#b𝑁) − 1)) ↔ 𝑁 < (2↑(#b𝑁))))
3514, 34anbi12d 632 . . . . . 6 (𝑁 ∈ ℕ → ((0 ≤ (𝑁 − (2↑((#b𝑁) − 1))) ∧ (𝑁 − (2↑((#b𝑁) − 1))) < (2↑((#b𝑁) − 1))) ↔ ((2↑((#b𝑁) − 1)) ≤ 𝑁𝑁 < (2↑(#b𝑁)))))
3613, 35mpbird 257 . . . . 5 (𝑁 ∈ ℕ → (0 ≤ (𝑁 − (2↑((#b𝑁) − 1))) ∧ (𝑁 − (2↑((#b𝑁) − 1))) < (2↑((#b𝑁) − 1))))
37 modid 13858 . . . . 5 ((((𝑁 − (2↑((#b𝑁) − 1))) ∈ ℝ ∧ (2↑((#b𝑁) − 1)) ∈ ℝ+) ∧ (0 ≤ (𝑁 − (2↑((#b𝑁) − 1))) ∧ (𝑁 − (2↑((#b𝑁) − 1))) < (2↑((#b𝑁) − 1)))) → ((𝑁 − (2↑((#b𝑁) − 1))) mod (2↑((#b𝑁) − 1))) = (𝑁 − (2↑((#b𝑁) − 1))))
3812, 8, 36, 37syl21anc 837 . . . 4 (𝑁 ∈ ℕ → ((𝑁 − (2↑((#b𝑁) − 1))) mod (2↑((#b𝑁) − 1))) = (𝑁 − (2↑((#b𝑁) − 1))))
3910, 38eqtr2d 2765 . . 3 (𝑁 ∈ ℕ → (𝑁 − (2↑((#b𝑁) − 1))) = (𝑁 mod (2↑((#b𝑁) − 1))))
40 nncn 12194 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
41 nnz 12550 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4241, 7zmodcld 13854 . . . . 5 (𝑁 ∈ ℕ → (𝑁 mod (2↑((#b𝑁) − 1))) ∈ ℕ0)
4342nn0cnd 12505 . . . 4 (𝑁 ∈ ℕ → (𝑁 mod (2↑((#b𝑁) − 1))) ∈ ℂ)
4440, 21, 43subaddd 11551 . . 3 (𝑁 ∈ ℕ → ((𝑁 − (2↑((#b𝑁) − 1))) = (𝑁 mod (2↑((#b𝑁) − 1))) ↔ ((2↑((#b𝑁) − 1)) + (𝑁 mod (2↑((#b𝑁) − 1)))) = 𝑁))
4539, 44mpbid 232 . 2 (𝑁 ∈ ℕ → ((2↑((#b𝑁) − 1)) + (𝑁 mod (2↑((#b𝑁) − 1)))) = 𝑁)
4645eqcomd 2735 1 (𝑁 ∈ ℕ → 𝑁 = ((2↑((#b𝑁) − 1)) + (𝑁 mod (2↑((#b𝑁) − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405  cn 12186  2c2 12241  0cn0 12442  +crp 12951   mod cmo 13831  cexp 14026  #bcblen 48558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466  df-logb 26675  df-blen 48559
This theorem is referenced by:  nnpw2p  48575
  Copyright terms: Public domain W3C validator