MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lesubaddd Structured version   Visualization version   GIF version

Theorem lesubaddd 11782
Description: 'Less than or equal to' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
ltadd1d.3 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
lesubaddd (𝜑 → ((𝐴𝐵) ≤ 𝐶𝐴 ≤ (𝐶 + 𝐵)))

Proof of Theorem lesubaddd
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnegd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 ltadd1d.3 . 2 (𝜑𝐶 ∈ ℝ)
4 lesubadd 11657 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵) ≤ 𝐶𝐴 ≤ (𝐶 + 𝐵)))
51, 2, 3, 4syl3anc 1373 1 (𝜑 → ((𝐴𝐵) ≤ 𝐶𝐴 ≤ (𝐶 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109   class class class wbr 5110  (class class class)co 7390  cr 11074   + caddc 11078  cle 11216  cmin 11412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415
This theorem is referenced by:  elfzomelpfzo  13739  modaddmodup  13906  01sqrexlem7  15221  absrdbnd  15315  caucvgrlem  15646  cvgcmp  15789  oddge22np1  16326  ramub1lem1  17004  psdmul  22060  chfacfisf  22748  chfacfisfcpmat  22749  uniioombllem4  25494  mbfi1fseqlem6  25628  dvfsumlem1  25939  abelthlem2  26349  argimgt0  26528  harmonicbnd4  26928  ppiub  27122  logfaclbnd  27140  logfacbnd3  27141  bcmax  27196  lgseisen  27297  log2sumbnd  27462  chpdifbndlem1  27471  pntpbnd2  27505  pntibndlem2  27509  pntlemo  27525  crctcshwlkn0lem5  29751  clwlkclwwlklem2  29936  clwlkclwwlk2  29939  nvabs  30608  dnibndlem4  36476  dnibndlem10  36482  itg2addnclem2  37673  itg2addnclem3  37674  posbezout  42095  bcle2d  42174  fzmaxdif  42977  int-ineqmvtd  44187  binomcxplemnotnn0  44352  xrralrecnnge  45393  limsupgtlem  45782  fourierdlem26  46138  hoidmv1lelem1  46596  leaddsuble  47302  fmtnoge3  47535  fmtnoprmfac2lem1  47571  bgoldbtbndlem2  47811  nnolog2flm1  48583
  Copyright terms: Public domain W3C validator