![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lesubaddd | Structured version Visualization version GIF version |
Description: 'Less than or equal to' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Ref | Expression |
---|---|
lesubaddd | ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 + 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | ltadd1d.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | lesubadd 11762 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 + 𝐵))) | |
5 | 1, 2, 3, 4 | syl3anc 1371 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 + 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 + caddc 11187 ≤ cle 11325 − cmin 11520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 |
This theorem is referenced by: elfzomelpfzo 13821 modaddmodup 13985 01sqrexlem7 15297 absrdbnd 15390 caucvgrlem 15721 cvgcmp 15864 oddge22np1 16397 ramub1lem1 17073 psdmul 22193 chfacfisf 22881 chfacfisfcpmat 22882 uniioombllem4 25640 mbfi1fseqlem6 25775 dvfsumlem1 26086 abelthlem2 26494 argimgt0 26672 harmonicbnd4 27072 ppiub 27266 logfaclbnd 27284 logfacbnd3 27285 bcmax 27340 lgseisen 27441 log2sumbnd 27606 chpdifbndlem1 27615 pntpbnd2 27649 pntibndlem2 27653 pntlemo 27669 crctcshwlkn0lem5 29847 clwlkclwwlklem2 30032 clwlkclwwlk2 30035 nvabs 30704 dnibndlem4 36447 dnibndlem10 36453 itg2addnclem2 37632 itg2addnclem3 37633 posbezout 42057 bcle2d 42136 metakunt16 42177 fzmaxdif 42938 int-ineqmvtd 44153 binomcxplemnotnn0 44325 xrralrecnnge 45305 limsupgtlem 45698 fourierdlem26 46054 hoidmv1lelem1 46512 leaddsuble 47212 fmtnoge3 47404 fmtnoprmfac2lem1 47440 bgoldbtbndlem2 47680 nnolog2flm1 48324 |
Copyright terms: Public domain | W3C validator |