Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ↔ wb 205
∈ wcel 2098 class class class wbr 5143
(class class class)co 7416 ℝcr 11137
+ caddc 11141 ≤
cle 11279 − cmin 11474 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905
ax-6 1963 ax-7 2003 ax-8 2100
ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 |
This theorem depends on definitions:
df-bi 206 df-an 395
df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 |
This theorem is referenced by: elfzomelpfzo
13768 modaddmodup
13931 01sqrexlem7
15227 absrdbnd
15320 caucvgrlem
15651 cvgcmp
15794 oddge22np1
16325 ramub1lem1
16994 psdmul
22098 chfacfisf
22774 chfacfisfcpmat
22775 uniioombllem4
25533 mbfi1fseqlem6
25668 dvfsumlem1
25978 abelthlem2
26387 argimgt0
26564 harmonicbnd4
26961 ppiub
27155 logfaclbnd
27173 logfacbnd3
27174 bcmax
27229 lgseisen
27330 log2sumbnd
27495 chpdifbndlem1
27504 pntpbnd2
27538 pntibndlem2
27542 pntlemo
27558 crctcshwlkn0lem5
29669 clwlkclwwlklem2
29854 clwlkclwwlk2
29857 nvabs
30526 dnibndlem4
36013 dnibndlem10
36019 itg2addnclem2
37202 itg2addnclem3
37203 posbezout
41627 bcle2d
41707 metakunt16
41728 fzmaxdif
42467 int-ineqmvtd
43686 binomcxplemnotnn0
43858 xrralrecnnge
44835 limsupgtlem
45228 fourierdlem26
45584 hoidmv1lelem1
46042 leaddsuble
46740 fmtnoge3
46933 fmtnoprmfac2lem1
46969 bgoldbtbndlem2
47209 nnolog2flm1
47775 |