MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lesubaddd Structured version   Visualization version   GIF version

Theorem lesubaddd 11841
Description: 'Less than or equal to' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
ltadd1d.3 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
lesubaddd (𝜑 → ((𝐴𝐵) ≤ 𝐶𝐴 ≤ (𝐶 + 𝐵)))

Proof of Theorem lesubaddd
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnegd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 ltadd1d.3 . 2 (𝜑𝐶 ∈ ℝ)
4 lesubadd 11716 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵) ≤ 𝐶𝐴 ≤ (𝐶 + 𝐵)))
51, 2, 3, 4syl3anc 1368 1 (𝜑 → ((𝐴𝐵) ≤ 𝐶𝐴 ≤ (𝐶 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2098   class class class wbr 5143  (class class class)co 7416  cr 11137   + caddc 11141  cle 11279  cmin 11474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477
This theorem is referenced by:  elfzomelpfzo  13768  modaddmodup  13931  01sqrexlem7  15227  absrdbnd  15320  caucvgrlem  15651  cvgcmp  15794  oddge22np1  16325  ramub1lem1  16994  psdmul  22098  chfacfisf  22774  chfacfisfcpmat  22775  uniioombllem4  25533  mbfi1fseqlem6  25668  dvfsumlem1  25978  abelthlem2  26387  argimgt0  26564  harmonicbnd4  26961  ppiub  27155  logfaclbnd  27173  logfacbnd3  27174  bcmax  27229  lgseisen  27330  log2sumbnd  27495  chpdifbndlem1  27504  pntpbnd2  27538  pntibndlem2  27542  pntlemo  27558  crctcshwlkn0lem5  29669  clwlkclwwlklem2  29854  clwlkclwwlk2  29857  nvabs  30526  dnibndlem4  36013  dnibndlem10  36019  itg2addnclem2  37202  itg2addnclem3  37203  posbezout  41627  bcle2d  41707  metakunt16  41728  fzmaxdif  42467  int-ineqmvtd  43686  binomcxplemnotnn0  43858  xrralrecnnge  44835  limsupgtlem  45228  fourierdlem26  45584  hoidmv1lelem1  46042  leaddsuble  46740  fmtnoge3  46933  fmtnoprmfac2lem1  46969  bgoldbtbndlem2  47209  nnolog2flm1  47775
  Copyright terms: Public domain W3C validator