|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > lesubaddd | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) | 
| Ref | Expression | 
|---|---|
| leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) | 
| Ref | Expression | 
|---|---|
| lesubaddd | ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 + 𝐵))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | ltadd1d.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 4 | lesubadd 11736 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 + 𝐵))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1372 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 + 𝐵))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2107 class class class wbr 5142 (class class class)co 7432 ℝcr 11155 + caddc 11159 ≤ cle 11297 − cmin 11493 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 | 
| This theorem is referenced by: elfzomelpfzo 13811 modaddmodup 13976 01sqrexlem7 15288 absrdbnd 15381 caucvgrlem 15710 cvgcmp 15853 oddge22np1 16387 ramub1lem1 17065 psdmul 22171 chfacfisf 22861 chfacfisfcpmat 22862 uniioombllem4 25622 mbfi1fseqlem6 25756 dvfsumlem1 26067 abelthlem2 26477 argimgt0 26655 harmonicbnd4 27055 ppiub 27249 logfaclbnd 27267 logfacbnd3 27268 bcmax 27323 lgseisen 27424 log2sumbnd 27589 chpdifbndlem1 27598 pntpbnd2 27632 pntibndlem2 27636 pntlemo 27652 crctcshwlkn0lem5 29835 clwlkclwwlklem2 30020 clwlkclwwlk2 30023 nvabs 30692 dnibndlem4 36483 dnibndlem10 36489 itg2addnclem2 37680 itg2addnclem3 37681 posbezout 42102 bcle2d 42181 metakunt16 42222 fzmaxdif 42998 int-ineqmvtd 44209 binomcxplemnotnn0 44380 xrralrecnnge 45406 limsupgtlem 45797 fourierdlem26 46153 hoidmv1lelem1 46611 leaddsuble 47314 fmtnoge3 47522 fmtnoprmfac2lem1 47558 bgoldbtbndlem2 47798 nnolog2flm1 48516 | 
| Copyright terms: Public domain | W3C validator |