| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lesubaddd | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| Ref | Expression |
|---|---|
| lesubaddd | ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 + 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | ltadd1d.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 4 | lesubadd 11599 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 + 𝐵))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 + 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7355 ℝcr 11015 + caddc 11019 ≤ cle 11157 − cmin 11354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 |
| This theorem is referenced by: elfzomelpfzo 13682 modaddmodup 13851 01sqrexlem7 15165 absrdbnd 15259 caucvgrlem 15590 cvgcmp 15733 oddge22np1 16270 ramub1lem1 16948 psdmul 22091 chfacfisf 22779 chfacfisfcpmat 22780 uniioombllem4 25524 mbfi1fseqlem6 25658 dvfsumlem1 25969 abelthlem2 26379 argimgt0 26558 harmonicbnd4 26958 ppiub 27152 logfaclbnd 27170 logfacbnd3 27171 bcmax 27226 lgseisen 27327 log2sumbnd 27492 chpdifbndlem1 27501 pntpbnd2 27535 pntibndlem2 27539 pntlemo 27555 crctcshwlkn0lem5 29803 clwlkclwwlklem2 29991 clwlkclwwlk2 29994 nvabs 30663 dnibndlem4 36536 dnibndlem10 36542 itg2addnclem2 37722 itg2addnclem3 37723 posbezout 42203 bcle2d 42282 fzmaxdif 43088 int-ineqmvtd 44298 binomcxplemnotnn0 44463 xrralrecnnge 45502 limsupgtlem 45889 fourierdlem26 46245 hoidmv1lelem1 46703 leaddsuble 47411 fmtnoge3 47644 fmtnoprmfac2lem1 47680 bgoldbtbndlem2 47920 nnolog2flm1 48705 |
| Copyright terms: Public domain | W3C validator |