MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lesubaddd Structured version   Visualization version   GIF version

Theorem lesubaddd 11706
Description: 'Less than or equal to' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
ltadd1d.3 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
lesubaddd (𝜑 → ((𝐴𝐵) ≤ 𝐶𝐴 ≤ (𝐶 + 𝐵)))

Proof of Theorem lesubaddd
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnegd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 ltadd1d.3 . 2 (𝜑𝐶 ∈ ℝ)
4 lesubadd 11581 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵) ≤ 𝐶𝐴 ≤ (𝐶 + 𝐵)))
51, 2, 3, 4syl3anc 1373 1 (𝜑 → ((𝐴𝐵) ≤ 𝐶𝐴 ≤ (𝐶 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2110   class class class wbr 5089  (class class class)co 7341  cr 10997   + caddc 11001  cle 11139  cmin 11336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339
This theorem is referenced by:  elfzomelpfzo  13664  modaddmodup  13833  01sqrexlem7  15147  absrdbnd  15241  caucvgrlem  15572  cvgcmp  15715  oddge22np1  16252  ramub1lem1  16930  psdmul  22074  chfacfisf  22762  chfacfisfcpmat  22763  uniioombllem4  25507  mbfi1fseqlem6  25641  dvfsumlem1  25952  abelthlem2  26362  argimgt0  26541  harmonicbnd4  26941  ppiub  27135  logfaclbnd  27153  logfacbnd3  27154  bcmax  27209  lgseisen  27310  log2sumbnd  27475  chpdifbndlem1  27484  pntpbnd2  27518  pntibndlem2  27522  pntlemo  27538  crctcshwlkn0lem5  29785  clwlkclwwlklem2  29970  clwlkclwwlk2  29973  nvabs  30642  dnibndlem4  36494  dnibndlem10  36500  itg2addnclem2  37691  itg2addnclem3  37692  posbezout  42112  bcle2d  42191  fzmaxdif  42993  int-ineqmvtd  44203  binomcxplemnotnn0  44368  xrralrecnnge  45407  limsupgtlem  45794  fourierdlem26  46150  hoidmv1lelem1  46608  leaddsuble  47307  fmtnoge3  47540  fmtnoprmfac2lem1  47576  bgoldbtbndlem2  47816  nnolog2flm1  48601
  Copyright terms: Public domain W3C validator