Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lesubaddd | Structured version Visualization version GIF version |
Description: 'Less than or equal to' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Ref | Expression |
---|---|
lesubaddd | ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 + 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | ltadd1d.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | lesubadd 11377 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 + 𝐵))) | |
5 | 1, 2, 3, 4 | syl3anc 1369 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 + 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 + caddc 10805 ≤ cle 10941 − cmin 11135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 |
This theorem is referenced by: elfzomelpfzo 13419 modaddmodup 13582 sqrlem7 14888 absrdbnd 14981 caucvgrlem 15312 cvgcmp 15456 oddge22np1 15986 ramub1lem1 16655 chfacfisf 21911 chfacfisfcpmat 21912 uniioombllem4 24655 mbfi1fseqlem6 24790 dvfsumlem1 25095 abelthlem2 25496 argimgt0 25672 harmonicbnd4 26065 ppiub 26257 logfaclbnd 26275 logfacbnd3 26276 bcmax 26331 lgseisen 26432 log2sumbnd 26597 chpdifbndlem1 26606 pntpbnd2 26640 pntibndlem2 26644 pntlemo 26660 crctcshwlkn0lem5 28080 clwlkclwwlklem2 28265 clwlkclwwlk2 28268 nvabs 28935 dnibndlem4 34588 dnibndlem10 34594 itg2addnclem2 35756 itg2addnclem3 35757 metakunt16 40068 fzmaxdif 40719 int-ineqmvtd 41691 binomcxplemnotnn0 41863 xrralrecnnge 42820 limsupgtlem 43208 fourierdlem26 43564 hoidmv1lelem1 44019 leaddsuble 44677 fmtnoge3 44870 fmtnoprmfac2lem1 44906 bgoldbtbndlem2 45146 nnolog2flm1 45824 |
Copyright terms: Public domain | W3C validator |