| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgfn | Structured version Visualization version GIF version | ||
| Description: Functionality of the group multiple operation. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| mulgfn.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgfn.t | ⊢ · = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| mulgfn | ⊢ · Fn (ℤ × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgfn.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2735 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | eqid 2735 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 4 | eqid 2735 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 5 | mulgfn.t | . . 3 ⊢ · = (.g‘𝐺) | |
| 6 | 1, 2, 3, 4, 5 | mulgfval 19052 | . 2 ⊢ · = (𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, (0g‘𝐺), if(0 < 𝑛, (seq1((+g‘𝐺), (ℕ × {𝑥}))‘𝑛), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑥}))‘-𝑛))))) |
| 7 | fvex 6889 | . . 3 ⊢ (0g‘𝐺) ∈ V | |
| 8 | fvex 6889 | . . . 4 ⊢ (seq1((+g‘𝐺), (ℕ × {𝑥}))‘𝑛) ∈ V | |
| 9 | fvex 6889 | . . . 4 ⊢ ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑥}))‘-𝑛)) ∈ V | |
| 10 | 8, 9 | ifex 4551 | . . 3 ⊢ if(0 < 𝑛, (seq1((+g‘𝐺), (ℕ × {𝑥}))‘𝑛), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑥}))‘-𝑛))) ∈ V |
| 11 | 7, 10 | ifex 4551 | . 2 ⊢ if(𝑛 = 0, (0g‘𝐺), if(0 < 𝑛, (seq1((+g‘𝐺), (ℕ × {𝑥}))‘𝑛), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑥}))‘-𝑛)))) ∈ V |
| 12 | 6, 11 | fnmpoi 8069 | 1 ⊢ · Fn (ℤ × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ifcif 4500 {csn 4601 class class class wbr 5119 × cxp 5652 Fn wfn 6526 ‘cfv 6531 0cc0 11129 1c1 11130 < clt 11269 -cneg 11467 ℕcn 12240 ℤcz 12588 seqcseq 14019 Basecbs 17228 +gcplusg 17271 0gc0g 17453 invgcminusg 18917 .gcmg 19050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-seq 14020 df-mulg 19051 |
| This theorem is referenced by: mulgfvi 19056 tgpmulg2 24032 |
| Copyright terms: Public domain | W3C validator |