![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0indALT | Structured version Visualization version GIF version |
Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The last four hypotheses give us the substitution instances we need; the first two are the basis and the induction step. Either nn0ind 12697 or nn0indALT 12698 may be used; see comment for nnind 12270. (Contributed by NM, 28-Nov-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
nn0indALT.6 | ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) |
nn0indALT.5 | ⊢ 𝜓 |
nn0indALT.1 | ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) |
nn0indALT.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
nn0indALT.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) |
nn0indALT.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
Ref | Expression |
---|---|
nn0indALT | ⊢ (𝐴 ∈ ℕ0 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0indALT.1 | . 2 ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) | |
2 | nn0indALT.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
3 | nn0indALT.3 | . 2 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) | |
4 | nn0indALT.4 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
5 | nn0indALT.5 | . 2 ⊢ 𝜓 | |
6 | nn0indALT.6 | . 2 ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) | |
7 | 1, 2, 3, 4, 5, 6 | nn0ind 12697 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 (class class class)co 7426 0cc0 11148 1c1 11149 + caddc 11151 ℕ0cn0 12512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12253 df-n0 12513 df-z 12599 |
This theorem is referenced by: uzaddcl 12928 faclbnd4lem4 14297 ipasslem1 30669 |
Copyright terms: Public domain | W3C validator |