![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0indd | Structured version Visualization version GIF version |
Description: Principle of Mathematical Induction (inference schema) on nonnegative integers, a deduction version. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
Ref | Expression |
---|---|
nn0indd.1 | ⊢ (𝑥 = 0 → (𝜓 ↔ 𝜒)) |
nn0indd.2 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) |
nn0indd.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) |
nn0indd.4 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) |
nn0indd.5 | ⊢ (𝜑 → 𝜒) |
nn0indd.6 | ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
nn0indd | ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ0) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0indd.1 | . . . 4 ⊢ (𝑥 = 0 → (𝜓 ↔ 𝜒)) | |
2 | 1 | imbi2d 341 | . . 3 ⊢ (𝑥 = 0 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) |
3 | nn0indd.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) | |
4 | 3 | imbi2d 341 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜃))) |
5 | nn0indd.3 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) | |
6 | 5 | imbi2d 341 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜏))) |
7 | nn0indd.4 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) | |
8 | 7 | imbi2d 341 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜂))) |
9 | nn0indd.5 | . . 3 ⊢ (𝜑 → 𝜒) | |
10 | nn0indd.6 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝜃) → 𝜏) | |
11 | 10 | ex 414 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → (𝜃 → 𝜏)) |
12 | 11 | expcom 415 | . . . 4 ⊢ (𝑦 ∈ ℕ0 → (𝜑 → (𝜃 → 𝜏))) |
13 | 12 | a2d 29 | . . 3 ⊢ (𝑦 ∈ ℕ0 → ((𝜑 → 𝜃) → (𝜑 → 𝜏))) |
14 | 2, 4, 6, 8, 9, 13 | nn0ind 12657 | . 2 ⊢ (𝐴 ∈ ℕ0 → (𝜑 → 𝜂)) |
15 | 14 | impcom 409 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ0) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 (class class class)co 7409 0cc0 11110 1c1 11111 + caddc 11113 ℕ0cn0 12472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 |
This theorem is referenced by: faclbnd6 14259 cjexp 15097 absexp 15251 bcxmas 15781 mhppwdeg 21693 tmdmulg 23596 omndmul2 32230 omndmul 32232 breprexp 33645 sticksstones22 40984 factwoffsmonot 41023 dvnxpaek 44658 itcovalendof 47355 itcovalpc 47358 |
Copyright terms: Public domain | W3C validator |