![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0ind | Structured version Visualization version GIF version |
Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.) |
Ref | Expression |
---|---|
nn0ind.1 | ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) |
nn0ind.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
nn0ind.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) |
nn0ind.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
nn0ind.5 | ⊢ 𝜓 |
nn0ind.6 | ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
nn0ind | ⊢ (𝐴 ∈ ℕ0 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0z 12571 | . 2 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴)) | |
2 | 0z 12569 | . . 3 ⊢ 0 ∈ ℤ | |
3 | nn0ind.1 | . . . 4 ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) | |
4 | nn0ind.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
5 | nn0ind.3 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) | |
6 | nn0ind.4 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
7 | nn0ind.5 | . . . . 5 ⊢ 𝜓 | |
8 | 7 | a1i 11 | . . . 4 ⊢ (0 ∈ ℤ → 𝜓) |
9 | elnn0z 12571 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦)) | |
10 | nn0ind.6 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) | |
11 | 9, 10 | sylbir 234 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) → (𝜒 → 𝜃)) |
12 | 11 | 3adant1 1131 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) → (𝜒 → 𝜃)) |
13 | 3, 4, 5, 6, 8, 12 | uzind 12654 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝜏) |
14 | 2, 13 | mp3an1 1449 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝜏) |
15 | 1, 14 | sylbi 216 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 class class class wbr 5149 (class class class)co 7409 0cc0 11110 1c1 11111 + caddc 11113 ≤ cle 11249 ℕ0cn0 12472 ℤcz 12558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 |
This theorem is referenced by: nn0indALT 12658 nn0indd 12659 zindd 12663 fzennn 13933 mulexp 14067 expadd 14070 expmul 14073 leexp1a 14140 bernneq 14192 modexp 14201 faccl 14243 facdiv 14247 facwordi 14249 faclbnd 14250 facubnd 14260 bccl 14282 brfi1indALT 14461 wrdind 14672 wrd2ind 14673 cshweqrep 14771 rtrclreclem4 15008 relexpindlem 15010 iseraltlem2 15629 binom 15776 climcndslem1 15795 binomfallfac 15985 demoivreALT 16144 ruclem8 16180 odd2np1lem 16283 bitsinv1 16383 sadcadd 16399 sadadd2 16401 saddisjlem 16405 smu01lem 16426 smumullem 16433 alginv 16512 prmfac1 16658 pcfac 16832 ramcl 16962 mhmmulg 18995 psgnunilem3 19364 sylow1lem1 19466 efgsrel 19602 efgsfo 19607 efgred 19616 srgmulgass 20040 srgpcomp 20041 srgbinom 20054 lmodvsmmulgdi 20507 cnfldexp 20978 assamulgscm 21455 mplcoe3 21593 expcn 24388 dvnadd 25446 dvnres 25448 dvnfre 25469 ply1divex 25654 fta1g 25685 plyco 25755 dgrco 25789 dvnply2 25800 plydivex 25810 fta1 25821 cxpmul2 26197 facgam 26570 dchrisumlem1 26992 qabvle 27128 qabvexp 27129 ostth2lem2 27137 rusgrnumwwlk 29260 eupth2 29523 ex-ind-dvds 29745 wrdt2ind 32148 subfacval2 34209 cvmliftlem7 34313 bccolsum 34740 faclim 34747 faclim2 34749 gg-expcn 35195 heiborlem4 36730 sumcubes 41259 mzpexpmpt 41531 pell14qrexpclnn0 41652 rmxypos 41734 jm2.17a 41747 jm2.17b 41748 rmygeid 41751 jm2.19lem3 41778 hbtlem5 41918 cnsrexpcl 41955 relexpiidm 42503 fperiodmullem 44061 stoweidlem17 44781 stoweidlem19 44783 wallispilem3 44831 fmtnorec2 46259 lmodvsmdi 47106 itcovalt2 47411 ackendofnn0 47418 |
Copyright terms: Public domain | W3C validator |