![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0ind | Structured version Visualization version GIF version |
Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.) |
Ref | Expression |
---|---|
nn0ind.1 | ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) |
nn0ind.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
nn0ind.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) |
nn0ind.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
nn0ind.5 | ⊢ 𝜓 |
nn0ind.6 | ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
nn0ind | ⊢ (𝐴 ∈ ℕ0 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0z 11842 | . 2 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴)) | |
2 | 0z 11840 | . . 3 ⊢ 0 ∈ ℤ | |
3 | nn0ind.1 | . . . 4 ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) | |
4 | nn0ind.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
5 | nn0ind.3 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) | |
6 | nn0ind.4 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
7 | nn0ind.5 | . . . . 5 ⊢ 𝜓 | |
8 | 7 | a1i 11 | . . . 4 ⊢ (0 ∈ ℤ → 𝜓) |
9 | elnn0z 11842 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦)) | |
10 | nn0ind.6 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) | |
11 | 9, 10 | sylbir 236 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) → (𝜒 → 𝜃)) |
12 | 11 | 3adant1 1123 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) → (𝜒 → 𝜃)) |
13 | 3, 4, 5, 6, 8, 12 | uzind 11923 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝜏) |
14 | 2, 13 | mp3an1 1440 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝜏) |
15 | 1, 14 | sylbi 218 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2081 class class class wbr 4962 (class class class)co 7016 0cc0 10383 1c1 10384 + caddc 10386 ≤ cle 10522 ℕ0cn0 11745 ℤcz 11829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-n0 11746 df-z 11830 |
This theorem is referenced by: nn0indALT 11927 nn0indd 11928 zindd 11932 fzennn 13186 mulexp 13318 expadd 13321 expmul 13324 leexp1a 13389 bernneq 13440 modexp 13449 faccl 13493 facdiv 13497 facwordi 13499 faclbnd 13500 facubnd 13510 bccl 13532 brfi1indALT 13704 wrdind 13920 wrd2ind 13921 cshweqrep 14019 rtrclreclem4 14254 relexpindlem 14256 iseraltlem2 14873 binom 15018 climcndslem1 15037 binomfallfac 15228 demoivreALT 15387 ruclem8 15423 odd2np1lem 15522 bitsinv1 15624 sadcadd 15640 sadadd2 15642 saddisjlem 15646 smu01lem 15667 smumullem 15674 alginv 15748 prmfac1 15892 pcfac 16064 ramcl 16194 mhmmulg 18022 psgnunilem3 18355 sylow1lem1 18453 efgsrel 18587 efgsfo 18592 efgred 18601 srgmulgass 18971 srgpcomp 18972 srgbinom 18985 lmodvsmmulgdi 19359 assamulgscm 19818 mplcoe3 19934 cnfldexp 20260 expcn 23163 dvnadd 24209 dvnres 24211 dvnfre 24232 ply1divex 24413 fta1g 24444 plyco 24514 dgrco 24548 dvnply2 24559 plydivex 24569 fta1 24580 cxpmul2 24953 facgam 25325 dchrisumlem1 25747 qabvle 25883 qabvexp 25884 ostth2lem2 25892 rusgrnumwwlk 27441 eupth2 27706 ex-ind-dvds 27932 wrdt2ind 30306 subfacval2 32042 cvmliftlem7 32146 bccolsum 32579 faclim 32586 faclim2 32588 heiborlem4 34624 mzpexpmpt 38827 pell14qrexpclnn0 38948 rmxypos 39029 jm2.17a 39042 jm2.17b 39043 rmygeid 39046 jm2.19lem3 39073 hbtlem5 39213 cnsrexpcl 39250 relexpiidm 39534 fperiodmullem 41111 stoweidlem17 41844 stoweidlem19 41846 wallispilem3 41894 fmtnorec2 43187 lmodvsmdi 43910 |
Copyright terms: Public domain | W3C validator |