MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ind Structured version   Visualization version   GIF version

Theorem nn0ind 12715
Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.)
Hypotheses
Ref Expression
nn0ind.1 (𝑥 = 0 → (𝜑𝜓))
nn0ind.2 (𝑥 = 𝑦 → (𝜑𝜒))
nn0ind.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
nn0ind.4 (𝑥 = 𝐴 → (𝜑𝜏))
nn0ind.5 𝜓
nn0ind.6 (𝑦 ∈ ℕ0 → (𝜒𝜃))
Assertion
Ref Expression
nn0ind (𝐴 ∈ ℕ0𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem nn0ind
StepHypRef Expression
1 elnn0z 12628 . 2 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴))
2 0z 12626 . . 3 0 ∈ ℤ
3 nn0ind.1 . . . 4 (𝑥 = 0 → (𝜑𝜓))
4 nn0ind.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜒))
5 nn0ind.3 . . . 4 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
6 nn0ind.4 . . . 4 (𝑥 = 𝐴 → (𝜑𝜏))
7 nn0ind.5 . . . . 5 𝜓
87a1i 11 . . . 4 (0 ∈ ℤ → 𝜓)
9 elnn0z 12628 . . . . . 6 (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦))
10 nn0ind.6 . . . . . 6 (𝑦 ∈ ℕ0 → (𝜒𝜃))
119, 10sylbir 235 . . . . 5 ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) → (𝜒𝜃))
12113adant1 1130 . . . 4 ((0 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) → (𝜒𝜃))
133, 4, 5, 6, 8, 12uzind 12712 . . 3 ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝜏)
142, 13mp3an1 1449 . 2 ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝜏)
151, 14sylbi 217 1 (𝐴 ∈ ℕ0𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107   class class class wbr 5142  (class class class)co 7432  0cc0 11156  1c1 11157   + caddc 11159  cle 11297  0cn0 12528  cz 12615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-z 12616
This theorem is referenced by:  nn0indALT  12716  nn0indd  12717  zindd  12721  fzennn  14010  mulexp  14143  expadd  14146  expmul  14149  leexp1a  14216  bernneq  14269  modexp  14278  faccl  14323  facdiv  14327  facwordi  14329  faclbnd  14330  facubnd  14340  bccl  14362  brfi1indALT  14550  wrdind  14761  wrd2ind  14762  cshweqrep  14860  rtrclreclem4  15101  relexpindlem  15103  iseraltlem2  15720  binom  15867  climcndslem1  15886  binomfallfac  16078  demoivreALT  16238  ruclem8  16274  odd2np1lem  16378  bitsinv1  16480  sadcadd  16496  sadadd2  16498  saddisjlem  16502  smu01lem  16523  smumullem  16530  alginv  16613  prmfac1  16758  pcfac  16938  ramcl  17068  mhmmulg  19134  psgnunilem3  19515  sylow1lem1  19617  efgsrel  19753  efgsfo  19758  efgred  19767  srgmulgass  20215  srgpcomp  20216  srgbinom  20229  lmodvsmmulgdi  20896  cnfldexp  21418  assamulgscm  21922  mplcoe3  22057  expcn  24897  expcnOLD  24899  dvnadd  25966  dvnres  25968  dvnfre  25991  ply1divex  26177  fta1g  26210  plyco  26281  dgrco  26316  dvnply2  26330  plydivex  26340  fta1  26351  cxpmul2  26732  facgam  27110  dchrisumlem1  27534  qabvle  27670  qabvexp  27671  ostth2lem2  27679  rusgrnumwwlk  29996  eupth2  30259  ex-ind-dvds  30481  wrdt2ind  32939  subfacval2  35193  cvmliftlem7  35297  bccolsum  35740  faclim  35747  faclim2  35749  heiborlem4  37822  sumcubes  42352  mzpexpmpt  42761  pell14qrexpclnn0  42882  rmxypos  42964  jm2.17a  42977  jm2.17b  42978  rmygeid  42981  jm2.19lem3  43008  hbtlem5  43145  cnsrexpcl  43182  relexpiidm  43722  fperiodmullem  45320  stoweidlem17  46037  stoweidlem19  46039  wallispilem3  46087  fmtnorec2  47535  lmodvsmdi  48300  itcovalt2  48603  ackendofnn0  48610
  Copyright terms: Public domain W3C validator