| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0ind | Structured version Visualization version GIF version | ||
| Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.) |
| Ref | Expression |
|---|---|
| nn0ind.1 | ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) |
| nn0ind.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| nn0ind.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) |
| nn0ind.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| nn0ind.5 | ⊢ 𝜓 |
| nn0ind.6 | ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| nn0ind | ⊢ (𝐴 ∈ ℕ0 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0z 12542 | . 2 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴)) | |
| 2 | 0z 12540 | . . 3 ⊢ 0 ∈ ℤ | |
| 3 | nn0ind.1 | . . . 4 ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) | |
| 4 | nn0ind.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 5 | nn0ind.3 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) | |
| 6 | nn0ind.4 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 7 | nn0ind.5 | . . . . 5 ⊢ 𝜓 | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (0 ∈ ℤ → 𝜓) |
| 9 | elnn0z 12542 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦)) | |
| 10 | nn0ind.6 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) | |
| 11 | 9, 10 | sylbir 235 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) → (𝜒 → 𝜃)) |
| 12 | 11 | 3adant1 1130 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) → (𝜒 → 𝜃)) |
| 13 | 3, 4, 5, 6, 8, 12 | uzind 12626 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝜏) |
| 14 | 2, 13 | mp3an1 1450 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝜏) |
| 15 | 1, 14 | sylbi 217 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 ≤ cle 11209 ℕ0cn0 12442 ℤcz 12529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 |
| This theorem is referenced by: nn0indALT 12630 nn0indd 12631 zindd 12635 fzennn 13933 mulexp 14066 expadd 14069 expmul 14072 leexp1a 14140 bernneq 14194 modexp 14203 faccl 14248 facdiv 14252 facwordi 14254 faclbnd 14255 facubnd 14265 bccl 14287 brfi1indALT 14475 wrdind 14687 wrd2ind 14688 cshweqrep 14786 rtrclreclem4 15027 relexpindlem 15029 iseraltlem2 15649 binom 15796 climcndslem1 15815 binomfallfac 16007 demoivreALT 16169 ruclem8 16205 odd2np1lem 16310 bitsinv1 16412 sadcadd 16428 sadadd2 16430 saddisjlem 16434 smu01lem 16455 smumullem 16462 alginv 16545 prmfac1 16690 pcfac 16870 ramcl 17000 mhmmulg 19047 psgnunilem3 19426 sylow1lem1 19528 efgsrel 19664 efgsfo 19669 efgred 19678 srgmulgass 20126 srgpcomp 20127 srgbinom 20140 lmodvsmmulgdi 20803 cnfldexp 21316 assamulgscm 21810 mplcoe3 21945 expcn 24763 expcnOLD 24765 dvnadd 25831 dvnres 25833 dvnfre 25856 ply1divex 26042 fta1g 26075 plyco 26146 dgrco 26181 dvnply2 26195 plydivex 26205 fta1 26216 cxpmul2 26598 facgam 26976 dchrisumlem1 27400 qabvle 27536 qabvexp 27537 ostth2lem2 27545 rusgrnumwwlk 29905 eupth2 30168 ex-ind-dvds 30390 wrdt2ind 32875 subfacval2 35174 cvmliftlem7 35278 bccolsum 35726 faclim 35733 faclim2 35735 heiborlem4 37808 sumcubes 42301 mzpexpmpt 42733 pell14qrexpclnn0 42854 rmxypos 42936 jm2.17a 42949 jm2.17b 42950 rmygeid 42953 jm2.19lem3 42980 hbtlem5 43117 cnsrexpcl 43154 relexpiidm 43693 fperiodmullem 45301 stoweidlem17 46015 stoweidlem19 46017 wallispilem3 46065 fmtnorec2 47544 lmodvsmdi 48367 itcovalt2 48666 ackendofnn0 48673 |
| Copyright terms: Public domain | W3C validator |