| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0ind | Structured version Visualization version GIF version | ||
| Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.) |
| Ref | Expression |
|---|---|
| nn0ind.1 | ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) |
| nn0ind.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| nn0ind.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) |
| nn0ind.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| nn0ind.5 | ⊢ 𝜓 |
| nn0ind.6 | ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| nn0ind | ⊢ (𝐴 ∈ ℕ0 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0z 12606 | . 2 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴)) | |
| 2 | 0z 12604 | . . 3 ⊢ 0 ∈ ℤ | |
| 3 | nn0ind.1 | . . . 4 ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) | |
| 4 | nn0ind.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 5 | nn0ind.3 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) | |
| 6 | nn0ind.4 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 7 | nn0ind.5 | . . . . 5 ⊢ 𝜓 | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (0 ∈ ℤ → 𝜓) |
| 9 | elnn0z 12606 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦)) | |
| 10 | nn0ind.6 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) | |
| 11 | 9, 10 | sylbir 235 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) → (𝜒 → 𝜃)) |
| 12 | 11 | 3adant1 1130 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) → (𝜒 → 𝜃)) |
| 13 | 3, 4, 5, 6, 8, 12 | uzind 12690 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝜏) |
| 14 | 2, 13 | mp3an1 1450 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝜏) |
| 15 | 1, 14 | sylbi 217 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 (class class class)co 7410 0cc0 11134 1c1 11135 + caddc 11137 ≤ cle 11275 ℕ0cn0 12506 ℤcz 12593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 |
| This theorem is referenced by: nn0indALT 12694 nn0indd 12695 zindd 12699 fzennn 13991 mulexp 14124 expadd 14127 expmul 14130 leexp1a 14198 bernneq 14252 modexp 14261 faccl 14306 facdiv 14310 facwordi 14312 faclbnd 14313 facubnd 14323 bccl 14345 brfi1indALT 14533 wrdind 14745 wrd2ind 14746 cshweqrep 14844 rtrclreclem4 15085 relexpindlem 15087 iseraltlem2 15704 binom 15851 climcndslem1 15870 binomfallfac 16062 demoivreALT 16224 ruclem8 16260 odd2np1lem 16364 bitsinv1 16466 sadcadd 16482 sadadd2 16484 saddisjlem 16488 smu01lem 16509 smumullem 16516 alginv 16599 prmfac1 16744 pcfac 16924 ramcl 17054 mhmmulg 19103 psgnunilem3 19482 sylow1lem1 19584 efgsrel 19720 efgsfo 19725 efgred 19734 srgmulgass 20182 srgpcomp 20183 srgbinom 20196 lmodvsmmulgdi 20859 cnfldexp 21372 assamulgscm 21866 mplcoe3 22001 expcn 24819 expcnOLD 24821 dvnadd 25888 dvnres 25890 dvnfre 25913 ply1divex 26099 fta1g 26132 plyco 26203 dgrco 26238 dvnply2 26252 plydivex 26262 fta1 26273 cxpmul2 26655 facgam 27033 dchrisumlem1 27457 qabvle 27593 qabvexp 27594 ostth2lem2 27602 rusgrnumwwlk 29962 eupth2 30225 ex-ind-dvds 30447 wrdt2ind 32934 subfacval2 35214 cvmliftlem7 35318 bccolsum 35761 faclim 35768 faclim2 35770 heiborlem4 37843 sumcubes 42331 mzpexpmpt 42743 pell14qrexpclnn0 42864 rmxypos 42946 jm2.17a 42959 jm2.17b 42960 rmygeid 42963 jm2.19lem3 42990 hbtlem5 43127 cnsrexpcl 43164 relexpiidm 43703 fperiodmullem 45312 stoweidlem17 46026 stoweidlem19 46028 wallispilem3 46076 fmtnorec2 47537 lmodvsmdi 48334 itcovalt2 48637 ackendofnn0 48644 |
| Copyright terms: Public domain | W3C validator |