MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ind Structured version   Visualization version   GIF version

Theorem nn0ind 12693
Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.)
Hypotheses
Ref Expression
nn0ind.1 (𝑥 = 0 → (𝜑𝜓))
nn0ind.2 (𝑥 = 𝑦 → (𝜑𝜒))
nn0ind.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
nn0ind.4 (𝑥 = 𝐴 → (𝜑𝜏))
nn0ind.5 𝜓
nn0ind.6 (𝑦 ∈ ℕ0 → (𝜒𝜃))
Assertion
Ref Expression
nn0ind (𝐴 ∈ ℕ0𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem nn0ind
StepHypRef Expression
1 elnn0z 12606 . 2 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴))
2 0z 12604 . . 3 0 ∈ ℤ
3 nn0ind.1 . . . 4 (𝑥 = 0 → (𝜑𝜓))
4 nn0ind.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜒))
5 nn0ind.3 . . . 4 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
6 nn0ind.4 . . . 4 (𝑥 = 𝐴 → (𝜑𝜏))
7 nn0ind.5 . . . . 5 𝜓
87a1i 11 . . . 4 (0 ∈ ℤ → 𝜓)
9 elnn0z 12606 . . . . . 6 (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦))
10 nn0ind.6 . . . . . 6 (𝑦 ∈ ℕ0 → (𝜒𝜃))
119, 10sylbir 235 . . . . 5 ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) → (𝜒𝜃))
12113adant1 1130 . . . 4 ((0 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) → (𝜒𝜃))
133, 4, 5, 6, 8, 12uzind 12690 . . 3 ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝜏)
142, 13mp3an1 1450 . 2 ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝜏)
151, 14sylbi 217 1 (𝐴 ∈ ℕ0𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5124  (class class class)co 7410  0cc0 11134  1c1 11135   + caddc 11137  cle 11275  0cn0 12506  cz 12593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594
This theorem is referenced by:  nn0indALT  12694  nn0indd  12695  zindd  12699  fzennn  13991  mulexp  14124  expadd  14127  expmul  14130  leexp1a  14198  bernneq  14252  modexp  14261  faccl  14306  facdiv  14310  facwordi  14312  faclbnd  14313  facubnd  14323  bccl  14345  brfi1indALT  14533  wrdind  14745  wrd2ind  14746  cshweqrep  14844  rtrclreclem4  15085  relexpindlem  15087  iseraltlem2  15704  binom  15851  climcndslem1  15870  binomfallfac  16062  demoivreALT  16224  ruclem8  16260  odd2np1lem  16364  bitsinv1  16466  sadcadd  16482  sadadd2  16484  saddisjlem  16488  smu01lem  16509  smumullem  16516  alginv  16599  prmfac1  16744  pcfac  16924  ramcl  17054  mhmmulg  19103  psgnunilem3  19482  sylow1lem1  19584  efgsrel  19720  efgsfo  19725  efgred  19734  srgmulgass  20182  srgpcomp  20183  srgbinom  20196  lmodvsmmulgdi  20859  cnfldexp  21372  assamulgscm  21866  mplcoe3  22001  expcn  24819  expcnOLD  24821  dvnadd  25888  dvnres  25890  dvnfre  25913  ply1divex  26099  fta1g  26132  plyco  26203  dgrco  26238  dvnply2  26252  plydivex  26262  fta1  26273  cxpmul2  26655  facgam  27033  dchrisumlem1  27457  qabvle  27593  qabvexp  27594  ostth2lem2  27602  rusgrnumwwlk  29962  eupth2  30225  ex-ind-dvds  30447  wrdt2ind  32934  subfacval2  35214  cvmliftlem7  35318  bccolsum  35761  faclim  35768  faclim2  35770  heiborlem4  37843  sumcubes  42331  mzpexpmpt  42743  pell14qrexpclnn0  42864  rmxypos  42946  jm2.17a  42959  jm2.17b  42960  rmygeid  42963  jm2.19lem3  42990  hbtlem5  43127  cnsrexpcl  43164  relexpiidm  43703  fperiodmullem  45312  stoweidlem17  46026  stoweidlem19  46028  wallispilem3  46076  fmtnorec2  47537  lmodvsmdi  48334  itcovalt2  48637  ackendofnn0  48644
  Copyright terms: Public domain W3C validator