| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0ind | Structured version Visualization version GIF version | ||
| Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.) |
| Ref | Expression |
|---|---|
| nn0ind.1 | ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) |
| nn0ind.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| nn0ind.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) |
| nn0ind.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| nn0ind.5 | ⊢ 𝜓 |
| nn0ind.6 | ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| nn0ind | ⊢ (𝐴 ∈ ℕ0 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0z 12476 | . 2 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴)) | |
| 2 | 0z 12474 | . . 3 ⊢ 0 ∈ ℤ | |
| 3 | nn0ind.1 | . . . 4 ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) | |
| 4 | nn0ind.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 5 | nn0ind.3 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) | |
| 6 | nn0ind.4 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 7 | nn0ind.5 | . . . . 5 ⊢ 𝜓 | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (0 ∈ ℤ → 𝜓) |
| 9 | elnn0z 12476 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦)) | |
| 10 | nn0ind.6 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) | |
| 11 | 9, 10 | sylbir 235 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) → (𝜒 → 𝜃)) |
| 12 | 11 | 3adant1 1130 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) → (𝜒 → 𝜃)) |
| 13 | 3, 4, 5, 6, 8, 12 | uzind 12560 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝜏) |
| 14 | 2, 13 | mp3an1 1450 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝜏) |
| 15 | 1, 14 | sylbi 217 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5086 (class class class)co 7341 0cc0 11001 1c1 11002 + caddc 11004 ≤ cle 11142 ℕ0cn0 12376 ℤcz 12463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 |
| This theorem is referenced by: nn0indALT 12564 nn0indd 12565 zindd 12569 fzennn 13870 mulexp 14003 expadd 14006 expmul 14009 leexp1a 14077 bernneq 14131 modexp 14140 faccl 14185 facdiv 14189 facwordi 14191 faclbnd 14192 facubnd 14202 bccl 14224 brfi1indALT 14412 wrdind 14624 wrd2ind 14625 cshweqrep 14723 rtrclreclem4 14963 relexpindlem 14965 iseraltlem2 15585 binom 15732 climcndslem1 15751 binomfallfac 15943 demoivreALT 16105 ruclem8 16141 odd2np1lem 16246 bitsinv1 16348 sadcadd 16364 sadadd2 16366 saddisjlem 16370 smu01lem 16391 smumullem 16398 alginv 16481 prmfac1 16626 pcfac 16806 ramcl 16936 mhmmulg 19023 psgnunilem3 19403 sylow1lem1 19505 efgsrel 19641 efgsfo 19646 efgred 19655 srgmulgass 20130 srgpcomp 20131 srgbinom 20144 lmodvsmmulgdi 20825 cnfldexp 21336 assamulgscm 21833 mplcoe3 21968 expcn 24785 expcnOLD 24787 dvnadd 25853 dvnres 25855 dvnfre 25878 ply1divex 26064 fta1g 26097 plyco 26168 dgrco 26203 dvnply2 26217 plydivex 26227 fta1 26238 cxpmul2 26620 facgam 26998 dchrisumlem1 27422 qabvle 27558 qabvexp 27559 ostth2lem2 27567 rusgrnumwwlk 29948 eupth2 30211 ex-ind-dvds 30433 wrdt2ind 32926 subfacval2 35223 cvmliftlem7 35327 bccolsum 35775 faclim 35782 faclim2 35784 heiborlem4 37854 sumcubes 42346 mzpexpmpt 42778 pell14qrexpclnn0 42899 rmxypos 42980 jm2.17a 42993 jm2.17b 42994 rmygeid 42997 jm2.19lem3 43024 hbtlem5 43161 cnsrexpcl 43198 relexpiidm 43737 fperiodmullem 45344 stoweidlem17 46055 stoweidlem19 46057 wallispilem3 46105 fmtnorec2 47574 lmodvsmdi 48410 itcovalt2 48709 ackendofnn0 48716 |
| Copyright terms: Public domain | W3C validator |