| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0ind | Structured version Visualization version GIF version | ||
| Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.) |
| Ref | Expression |
|---|---|
| nn0ind.1 | ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) |
| nn0ind.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| nn0ind.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) |
| nn0ind.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| nn0ind.5 | ⊢ 𝜓 |
| nn0ind.6 | ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| nn0ind | ⊢ (𝐴 ∈ ℕ0 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0z 12628 | . 2 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴)) | |
| 2 | 0z 12626 | . . 3 ⊢ 0 ∈ ℤ | |
| 3 | nn0ind.1 | . . . 4 ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) | |
| 4 | nn0ind.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 5 | nn0ind.3 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) | |
| 6 | nn0ind.4 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 7 | nn0ind.5 | . . . . 5 ⊢ 𝜓 | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (0 ∈ ℤ → 𝜓) |
| 9 | elnn0z 12628 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦)) | |
| 10 | nn0ind.6 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) | |
| 11 | 9, 10 | sylbir 235 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) → (𝜒 → 𝜃)) |
| 12 | 11 | 3adant1 1130 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) → (𝜒 → 𝜃)) |
| 13 | 3, 4, 5, 6, 8, 12 | uzind 12712 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝜏) |
| 14 | 2, 13 | mp3an1 1449 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝜏) |
| 15 | 1, 14 | sylbi 217 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5142 (class class class)co 7432 0cc0 11156 1c1 11157 + caddc 11159 ≤ cle 11297 ℕ0cn0 12528 ℤcz 12615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-n0 12529 df-z 12616 |
| This theorem is referenced by: nn0indALT 12716 nn0indd 12717 zindd 12721 fzennn 14010 mulexp 14143 expadd 14146 expmul 14149 leexp1a 14216 bernneq 14269 modexp 14278 faccl 14323 facdiv 14327 facwordi 14329 faclbnd 14330 facubnd 14340 bccl 14362 brfi1indALT 14550 wrdind 14761 wrd2ind 14762 cshweqrep 14860 rtrclreclem4 15101 relexpindlem 15103 iseraltlem2 15720 binom 15867 climcndslem1 15886 binomfallfac 16078 demoivreALT 16238 ruclem8 16274 odd2np1lem 16378 bitsinv1 16480 sadcadd 16496 sadadd2 16498 saddisjlem 16502 smu01lem 16523 smumullem 16530 alginv 16613 prmfac1 16758 pcfac 16938 ramcl 17068 mhmmulg 19134 psgnunilem3 19515 sylow1lem1 19617 efgsrel 19753 efgsfo 19758 efgred 19767 srgmulgass 20215 srgpcomp 20216 srgbinom 20229 lmodvsmmulgdi 20896 cnfldexp 21418 assamulgscm 21922 mplcoe3 22057 expcn 24897 expcnOLD 24899 dvnadd 25966 dvnres 25968 dvnfre 25991 ply1divex 26177 fta1g 26210 plyco 26281 dgrco 26316 dvnply2 26330 plydivex 26340 fta1 26351 cxpmul2 26732 facgam 27110 dchrisumlem1 27534 qabvle 27670 qabvexp 27671 ostth2lem2 27679 rusgrnumwwlk 29996 eupth2 30259 ex-ind-dvds 30481 wrdt2ind 32939 subfacval2 35193 cvmliftlem7 35297 bccolsum 35740 faclim 35747 faclim2 35749 heiborlem4 37822 sumcubes 42352 mzpexpmpt 42761 pell14qrexpclnn0 42882 rmxypos 42964 jm2.17a 42977 jm2.17b 42978 rmygeid 42981 jm2.19lem3 43008 hbtlem5 43145 cnsrexpcl 43182 relexpiidm 43722 fperiodmullem 45320 stoweidlem17 46037 stoweidlem19 46039 wallispilem3 46087 fmtnorec2 47535 lmodvsmdi 48300 itcovalt2 48603 ackendofnn0 48610 |
| Copyright terms: Public domain | W3C validator |