MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ind Structured version   Visualization version   GIF version

Theorem nn0ind 12590
Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.)
Hypotheses
Ref Expression
nn0ind.1 (𝑥 = 0 → (𝜑𝜓))
nn0ind.2 (𝑥 = 𝑦 → (𝜑𝜒))
nn0ind.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
nn0ind.4 (𝑥 = 𝐴 → (𝜑𝜏))
nn0ind.5 𝜓
nn0ind.6 (𝑦 ∈ ℕ0 → (𝜒𝜃))
Assertion
Ref Expression
nn0ind (𝐴 ∈ ℕ0𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem nn0ind
StepHypRef Expression
1 elnn0z 12503 . 2 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴))
2 0z 12501 . . 3 0 ∈ ℤ
3 nn0ind.1 . . . 4 (𝑥 = 0 → (𝜑𝜓))
4 nn0ind.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜒))
5 nn0ind.3 . . . 4 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
6 nn0ind.4 . . . 4 (𝑥 = 𝐴 → (𝜑𝜏))
7 nn0ind.5 . . . . 5 𝜓
87a1i 11 . . . 4 (0 ∈ ℤ → 𝜓)
9 elnn0z 12503 . . . . . 6 (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦))
10 nn0ind.6 . . . . . 6 (𝑦 ∈ ℕ0 → (𝜒𝜃))
119, 10sylbir 235 . . . . 5 ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) → (𝜒𝜃))
12113adant1 1130 . . . 4 ((0 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) → (𝜒𝜃))
133, 4, 5, 6, 8, 12uzind 12587 . . 3 ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝜏)
142, 13mp3an1 1450 . 2 ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝜏)
151, 14sylbi 217 1 (𝐴 ∈ ℕ0𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5095  (class class class)co 7353  0cc0 11028  1c1 11029   + caddc 11031  cle 11169  0cn0 12403  cz 12490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-n0 12404  df-z 12491
This theorem is referenced by:  nn0indALT  12591  nn0indd  12592  zindd  12596  fzennn  13894  mulexp  14027  expadd  14030  expmul  14033  leexp1a  14101  bernneq  14155  modexp  14164  faccl  14209  facdiv  14213  facwordi  14215  faclbnd  14216  facubnd  14226  bccl  14248  brfi1indALT  14436  wrdind  14647  wrd2ind  14648  cshweqrep  14746  rtrclreclem4  14987  relexpindlem  14989  iseraltlem2  15609  binom  15756  climcndslem1  15775  binomfallfac  15967  demoivreALT  16129  ruclem8  16165  odd2np1lem  16270  bitsinv1  16372  sadcadd  16388  sadadd2  16390  saddisjlem  16394  smu01lem  16415  smumullem  16422  alginv  16505  prmfac1  16650  pcfac  16830  ramcl  16960  mhmmulg  19013  psgnunilem3  19394  sylow1lem1  19496  efgsrel  19632  efgsfo  19637  efgred  19646  srgmulgass  20121  srgpcomp  20122  srgbinom  20135  lmodvsmmulgdi  20819  cnfldexp  21330  assamulgscm  21827  mplcoe3  21962  expcn  24780  expcnOLD  24782  dvnadd  25848  dvnres  25850  dvnfre  25873  ply1divex  26059  fta1g  26092  plyco  26163  dgrco  26198  dvnply2  26212  plydivex  26222  fta1  26233  cxpmul2  26615  facgam  26993  dchrisumlem1  27417  qabvle  27553  qabvexp  27554  ostth2lem2  27562  rusgrnumwwlk  29939  eupth2  30202  ex-ind-dvds  30424  wrdt2ind  32914  subfacval2  35179  cvmliftlem7  35283  bccolsum  35731  faclim  35738  faclim2  35740  heiborlem4  37813  sumcubes  42306  mzpexpmpt  42738  pell14qrexpclnn0  42859  rmxypos  42940  jm2.17a  42953  jm2.17b  42954  rmygeid  42957  jm2.19lem3  42984  hbtlem5  43121  cnsrexpcl  43158  relexpiidm  43697  fperiodmullem  45305  stoweidlem17  46018  stoweidlem19  46020  wallispilem3  46068  fmtnorec2  47547  lmodvsmdi  48383  itcovalt2  48682  ackendofnn0  48689
  Copyright terms: Public domain W3C validator