| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0ind | Structured version Visualization version GIF version | ||
| Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.) |
| Ref | Expression |
|---|---|
| nn0ind.1 | ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) |
| nn0ind.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| nn0ind.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) |
| nn0ind.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| nn0ind.5 | ⊢ 𝜓 |
| nn0ind.6 | ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| nn0ind | ⊢ (𝐴 ∈ ℕ0 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0z 12492 | . 2 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴)) | |
| 2 | 0z 12490 | . . 3 ⊢ 0 ∈ ℤ | |
| 3 | nn0ind.1 | . . . 4 ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) | |
| 4 | nn0ind.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 5 | nn0ind.3 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) | |
| 6 | nn0ind.4 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 7 | nn0ind.5 | . . . . 5 ⊢ 𝜓 | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (0 ∈ ℤ → 𝜓) |
| 9 | elnn0z 12492 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦)) | |
| 10 | nn0ind.6 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) | |
| 11 | 9, 10 | sylbir 235 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) → (𝜒 → 𝜃)) |
| 12 | 11 | 3adant1 1130 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) → (𝜒 → 𝜃)) |
| 13 | 3, 4, 5, 6, 8, 12 | uzind 12575 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝜏) |
| 14 | 2, 13 | mp3an1 1450 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝜏) |
| 15 | 1, 14 | sylbi 217 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7355 0cc0 11017 1c1 11018 + caddc 11020 ≤ cle 11158 ℕ0cn0 12392 ℤcz 12479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-n0 12393 df-z 12480 |
| This theorem is referenced by: nn0indALT 12579 nn0indd 12580 zindd 12584 fzennn 13882 mulexp 14015 expadd 14018 expmul 14021 leexp1a 14089 bernneq 14143 modexp 14152 faccl 14197 facdiv 14201 facwordi 14203 faclbnd 14204 facubnd 14214 bccl 14236 brfi1indALT 14424 wrdind 14636 wrd2ind 14637 cshweqrep 14735 rtrclreclem4 14975 relexpindlem 14977 iseraltlem2 15597 binom 15744 climcndslem1 15763 binomfallfac 15955 demoivreALT 16117 ruclem8 16153 odd2np1lem 16258 bitsinv1 16360 sadcadd 16376 sadadd2 16378 saddisjlem 16382 smu01lem 16403 smumullem 16410 alginv 16493 prmfac1 16638 pcfac 16818 ramcl 16948 mhmmulg 19036 psgnunilem3 19416 sylow1lem1 19518 efgsrel 19654 efgsfo 19659 efgred 19668 srgmulgass 20143 srgpcomp 20144 srgbinom 20157 lmodvsmmulgdi 20839 cnfldexp 21350 assamulgscm 21848 mplcoe3 21984 expcn 24810 expcnOLD 24812 dvnadd 25878 dvnres 25880 dvnfre 25903 ply1divex 26089 fta1g 26122 plyco 26193 dgrco 26228 dvnply2 26242 plydivex 26252 fta1 26263 cxpmul2 26645 facgam 27023 dchrisumlem1 27447 qabvle 27583 qabvexp 27584 ostth2lem2 27592 rusgrnumwwlk 29977 eupth2 30240 ex-ind-dvds 30462 wrdt2ind 32963 subfacval2 35303 cvmliftlem7 35407 bccolsum 35855 faclim 35862 faclim2 35864 heiborlem4 37927 sumcubes 42483 mzpexpmpt 42902 pell14qrexpclnn0 43023 rmxypos 43104 jm2.17a 43117 jm2.17b 43118 rmygeid 43121 jm2.19lem3 43148 hbtlem5 43285 cnsrexpcl 43322 relexpiidm 43861 fperiodmullem 45467 stoweidlem17 46177 stoweidlem19 46179 wallispilem3 46227 fmtnorec2 47705 lmodvsmdi 48541 itcovalt2 48839 ackendofnn0 48846 |
| Copyright terms: Public domain | W3C validator |