MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nndivtr Structured version   Visualization version   GIF version

Theorem nndivtr 12211
Description: Transitive property of divisibility: if 𝐴 divides 𝐵 and 𝐵 divides 𝐶, then 𝐴 divides 𝐶. Typically, 𝐶 would be an integer, although the theorem holds for complex 𝐶. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
nndivtr (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ)) → (𝐶 / 𝐴) ∈ ℕ)

Proof of Theorem nndivtr
StepHypRef Expression
1 nnmulcl 12188 . . 3 (((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ) → ((𝐵 / 𝐴) · (𝐶 / 𝐵)) ∈ ℕ)
2 nncn 12172 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
323ad2ant2 1134 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ)
4 simp3 1138 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
5 nncn 12172 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
6 nnne0 12198 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
75, 6jca 511 . . . . . . 7 (𝐴 ∈ ℕ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
873ad2ant1 1133 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
9 nnne0 12198 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
102, 9jca 511 . . . . . . 7 (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
11103ad2ant2 1134 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
12 divmul24 11864 . . . . . 6 (((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))) → ((𝐵 / 𝐴) · (𝐶 / 𝐵)) = ((𝐵 / 𝐵) · (𝐶 / 𝐴)))
133, 4, 8, 11, 12syl22anc 838 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → ((𝐵 / 𝐴) · (𝐶 / 𝐵)) = ((𝐵 / 𝐵) · (𝐶 / 𝐴)))
142, 9dividd 11934 . . . . . . 7 (𝐵 ∈ ℕ → (𝐵 / 𝐵) = 1)
1514oveq1d 7384 . . . . . 6 (𝐵 ∈ ℕ → ((𝐵 / 𝐵) · (𝐶 / 𝐴)) = (1 · (𝐶 / 𝐴)))
16153ad2ant2 1134 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → ((𝐵 / 𝐵) · (𝐶 / 𝐴)) = (1 · (𝐶 / 𝐴)))
17 divcl 11821 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐶 / 𝐴) ∈ ℂ)
18173expb 1120 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (𝐶 / 𝐴) ∈ ℂ)
197, 18sylan2 593 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℕ) → (𝐶 / 𝐴) ∈ ℂ)
2019ancoms 458 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (𝐶 / 𝐴) ∈ ℂ)
2120mullidd 11170 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (1 · (𝐶 / 𝐴)) = (𝐶 / 𝐴))
22213adant2 1131 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (1 · (𝐶 / 𝐴)) = (𝐶 / 𝐴))
2313, 16, 223eqtrd 2768 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → ((𝐵 / 𝐴) · (𝐶 / 𝐵)) = (𝐶 / 𝐴))
2423eleq1d 2813 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (((𝐵 / 𝐴) · (𝐶 / 𝐵)) ∈ ℕ ↔ (𝐶 / 𝐴) ∈ ℕ))
251, 24imbitrid 244 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ) → (𝐶 / 𝐴) ∈ ℕ))
2625imp 406 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ)) → (𝐶 / 𝐴) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7369  cc 11044  0cc0 11046  1c1 11047   · cmul 11051   / cdiv 11813  cn 12164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165
This theorem is referenced by:  permnn  14269  infpnlem1  16858
  Copyright terms: Public domain W3C validator