MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nndivtr Structured version   Visualization version   GIF version

Theorem nndivtr 12241
Description: Transitive property of divisibility: if 𝐴 divides 𝐵 and 𝐵 divides 𝐶, then 𝐴 divides 𝐶. Typically, 𝐶 would be an integer, although the theorem holds for complex 𝐶. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
nndivtr (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ)) → (𝐶 / 𝐴) ∈ ℕ)

Proof of Theorem nndivtr
StepHypRef Expression
1 nnmulcl 12218 . . 3 (((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ) → ((𝐵 / 𝐴) · (𝐶 / 𝐵)) ∈ ℕ)
2 nncn 12202 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
323ad2ant2 1134 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ)
4 simp3 1138 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
5 nncn 12202 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
6 nnne0 12228 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
75, 6jca 512 . . . . . . 7 (𝐴 ∈ ℕ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
873ad2ant1 1133 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
9 nnne0 12228 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
102, 9jca 512 . . . . . . 7 (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
11103ad2ant2 1134 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
12 divmul24 11900 . . . . . 6 (((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))) → ((𝐵 / 𝐴) · (𝐶 / 𝐵)) = ((𝐵 / 𝐵) · (𝐶 / 𝐴)))
133, 4, 8, 11, 12syl22anc 837 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → ((𝐵 / 𝐴) · (𝐶 / 𝐵)) = ((𝐵 / 𝐵) · (𝐶 / 𝐴)))
142, 9dividd 11970 . . . . . . 7 (𝐵 ∈ ℕ → (𝐵 / 𝐵) = 1)
1514oveq1d 7408 . . . . . 6 (𝐵 ∈ ℕ → ((𝐵 / 𝐵) · (𝐶 / 𝐴)) = (1 · (𝐶 / 𝐴)))
16153ad2ant2 1134 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → ((𝐵 / 𝐵) · (𝐶 / 𝐴)) = (1 · (𝐶 / 𝐴)))
17 divcl 11860 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐶 / 𝐴) ∈ ℂ)
18173expb 1120 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (𝐶 / 𝐴) ∈ ℂ)
197, 18sylan2 593 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℕ) → (𝐶 / 𝐴) ∈ ℂ)
2019ancoms 459 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (𝐶 / 𝐴) ∈ ℂ)
2120mullidd 11214 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (1 · (𝐶 / 𝐴)) = (𝐶 / 𝐴))
22213adant2 1131 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (1 · (𝐶 / 𝐴)) = (𝐶 / 𝐴))
2313, 16, 223eqtrd 2775 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → ((𝐵 / 𝐴) · (𝐶 / 𝐵)) = (𝐶 / 𝐴))
2423eleq1d 2817 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (((𝐵 / 𝐴) · (𝐶 / 𝐵)) ∈ ℕ ↔ (𝐶 / 𝐴) ∈ ℕ))
251, 24imbitrid 243 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ) → (𝐶 / 𝐴) ∈ ℕ))
2625imp 407 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ)) → (𝐶 / 𝐴) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939  (class class class)co 7393  cc 11090  0cc0 11092  1c1 11093   · cmul 11097   / cdiv 11853  cn 12194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195
This theorem is referenced by:  permnn  14268  infpnlem1  16825
  Copyright terms: Public domain W3C validator