Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nndivtr Structured version   Visualization version   GIF version

Theorem nndivtr 11721
 Description: Transitive property of divisibility: if 𝐴 divides 𝐵 and 𝐵 divides 𝐶, then 𝐴 divides 𝐶. Typically, 𝐶 would be an integer, although the theorem holds for complex 𝐶. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
nndivtr (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ)) → (𝐶 / 𝐴) ∈ ℕ)

Proof of Theorem nndivtr
StepHypRef Expression
1 nnmulcl 11698 . . 3 (((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ) → ((𝐵 / 𝐴) · (𝐶 / 𝐵)) ∈ ℕ)
2 nncn 11682 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
323ad2ant2 1131 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ)
4 simp3 1135 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
5 nncn 11682 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
6 nnne0 11708 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
75, 6jca 515 . . . . . . 7 (𝐴 ∈ ℕ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
873ad2ant1 1130 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
9 nnne0 11708 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
102, 9jca 515 . . . . . . 7 (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
11103ad2ant2 1131 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
12 divmul24 11382 . . . . . 6 (((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))) → ((𝐵 / 𝐴) · (𝐶 / 𝐵)) = ((𝐵 / 𝐵) · (𝐶 / 𝐴)))
133, 4, 8, 11, 12syl22anc 837 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → ((𝐵 / 𝐴) · (𝐶 / 𝐵)) = ((𝐵 / 𝐵) · (𝐶 / 𝐴)))
142, 9dividd 11452 . . . . . . 7 (𝐵 ∈ ℕ → (𝐵 / 𝐵) = 1)
1514oveq1d 7165 . . . . . 6 (𝐵 ∈ ℕ → ((𝐵 / 𝐵) · (𝐶 / 𝐴)) = (1 · (𝐶 / 𝐴)))
16153ad2ant2 1131 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → ((𝐵 / 𝐵) · (𝐶 / 𝐴)) = (1 · (𝐶 / 𝐴)))
17 divcl 11342 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐶 / 𝐴) ∈ ℂ)
18173expb 1117 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (𝐶 / 𝐴) ∈ ℂ)
197, 18sylan2 595 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℕ) → (𝐶 / 𝐴) ∈ ℂ)
2019ancoms 462 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (𝐶 / 𝐴) ∈ ℂ)
2120mulid2d 10697 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (1 · (𝐶 / 𝐴)) = (𝐶 / 𝐴))
22213adant2 1128 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (1 · (𝐶 / 𝐴)) = (𝐶 / 𝐴))
2313, 16, 223eqtrd 2797 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → ((𝐵 / 𝐴) · (𝐶 / 𝐵)) = (𝐶 / 𝐴))
2423eleq1d 2836 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (((𝐵 / 𝐴) · (𝐶 / 𝐵)) ∈ ℕ ↔ (𝐶 / 𝐴) ∈ ℕ))
251, 24syl5ib 247 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ) → (𝐶 / 𝐴) ∈ ℕ))
2625imp 410 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ)) → (𝐶 / 𝐴) ∈ ℕ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  (class class class)co 7150  ℂcc 10573  0cc0 10575  1c1 10576   · cmul 10580   / cdiv 11335  ℕcn 11674 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675 This theorem is referenced by:  permnn  13736  infpnlem1  16301
 Copyright terms: Public domain W3C validator