Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnennexALTV Structured version   Visualization version   GIF version

Theorem nnennexALTV 47041
Description: For each even positive integer there is a positive integer which, multiplied by 2, results in the even positive integer. (Contributed by AV, 5-Jun-2023.)
Assertion
Ref Expression
nnennexALTV ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ∃𝑚 ∈ ℕ 𝑁 = (2 · 𝑚))
Distinct variable group:   𝑚,𝑁

Proof of Theorem nnennexALTV
StepHypRef Expression
1 nneven 47038 . 2 ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → (𝑁 / 2) ∈ ℕ)
2 oveq2 7428 . . . 4 (𝑚 = (𝑁 / 2) → (2 · 𝑚) = (2 · (𝑁 / 2)))
32eqeq2d 2739 . . 3 (𝑚 = (𝑁 / 2) → (𝑁 = (2 · 𝑚) ↔ 𝑁 = (2 · (𝑁 / 2))))
43adantl 481 . 2 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ 𝑚 = (𝑁 / 2)) → (𝑁 = (2 · 𝑚) ↔ 𝑁 = (2 · (𝑁 / 2))))
5 nncn 12251 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
6 2cnd 12321 . . . 4 (𝑁 ∈ ℕ → 2 ∈ ℂ)
7 2ne0 12347 . . . . 5 2 ≠ 0
87a1i 11 . . . 4 (𝑁 ∈ ℕ → 2 ≠ 0)
9 divcan2 11911 . . . . 5 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝑁 / 2)) = 𝑁)
109eqcomd 2734 . . . 4 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → 𝑁 = (2 · (𝑁 / 2)))
115, 6, 8, 10syl3anc 1369 . . 3 (𝑁 ∈ ℕ → 𝑁 = (2 · (𝑁 / 2)))
1211adantr 480 . 2 ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → 𝑁 = (2 · (𝑁 / 2)))
131, 4, 12rspcedvd 3611 1 ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ∃𝑚 ∈ ℕ 𝑁 = (2 · 𝑚))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2937  wrex 3067  (class class class)co 7420  cc 11137  0cc0 11139   · cmul 11144   / cdiv 11902  cn 12243  2c2 12298   Even ceven 46964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-z 12590  df-even 46966
This theorem is referenced by:  fppr2odd  47071
  Copyright terms: Public domain W3C validator