MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sno Structured version   Visualization version   GIF version

Theorem 2sno 28305
Description: Surreal two is a surreal number. (Contributed by Scott Fenton, 23-Jul-2025.)
Assertion
Ref Expression
2sno 2s No

Proof of Theorem 2sno
StepHypRef Expression
1 2nns 28304 . 2 2s ∈ ℕs
2 nnsno 28217 . 2 (2s ∈ ℕs → 2s No )
31, 2ax-mp 5 1 2s No
Colors of variables: wff setvar class
Syntax hints:  wcel 2109   No csur 27551  scnns 28207  2sc2s 28296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-nadd 8630  df-no 27554  df-slt 27555  df-bday 27556  df-sle 27657  df-sslt 27693  df-scut 27695  df-0s 27736  df-1s 27737  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-norec2 27856  df-adds 27867  df-n0s 28208  df-nns 28209  df-2s 28297
This theorem is referenced by:  n0seo  28307  zseo  28308  nohalf  28310  pw2recs  28323  pw2divscld  28324  pw2divsmuld  28325  pw2divscan3d  28326  pw2divscan2d  28327  pw2gt0divsd  28328  pw2ge0divsd  28329  pw2divsrecd  28330  pw2divsnegd  28332  halfcut  28333  addhalfcut  28334  pw2cut  28335  pw2cutp1  28336  zzs12  28339  zs12ge0  28342  zs12bday  28343
  Copyright terms: Public domain W3C validator