MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sno Structured version   Visualization version   GIF version

Theorem 2sno 28362
Description: Surreal two is a surreal number. (Contributed by Scott Fenton, 23-Jul-2025.)
Assertion
Ref Expression
2sno 2s No

Proof of Theorem 2sno
StepHypRef Expression
1 2nns 28361 . 2 2s ∈ ℕs
2 nnsno 28274 . 2 (2s ∈ ℕs → 2s No )
31, 2ax-mp 5 1 2s No
Colors of variables: wff setvar class
Syntax hints:  wcel 2109   No csur 27608  scnns 28264  2sc2s 28353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-nadd 8683  df-no 27611  df-slt 27612  df-bday 27613  df-sle 27714  df-sslt 27750  df-scut 27752  df-0s 27793  df-1s 27794  df-made 27812  df-old 27813  df-left 27815  df-right 27816  df-norec2 27913  df-adds 27924  df-n0s 28265  df-nns 28266  df-2s 28354
This theorem is referenced by:  n0seo  28364  zseo  28365  nohalf  28367  pw2recs  28380  pw2divscld  28381  pw2divsmuld  28382  pw2divscan3d  28383  pw2divscan2d  28384  pw2gt0divsd  28385  pw2ge0divsd  28386  pw2divsrecd  28387  pw2divsnegd  28389  halfcut  28390  addhalfcut  28391  pw2cut  28392  pw2cutp1  28393  zzs12  28396  zs12ge0  28399  zs12bday  28400
  Copyright terms: Public domain W3C validator