| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2sno | Structured version Visualization version GIF version | ||
| Description: Surreal two is a surreal number. (Contributed by Scott Fenton, 23-Jul-2025.) |
| Ref | Expression |
|---|---|
| 2sno | ⊢ 2s ∈ No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nns 28347 | . 2 ⊢ 2s ∈ ℕs | |
| 2 | nnsno 28259 | . 2 ⊢ (2s ∈ ℕs → 2s ∈ No ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 2s ∈ No |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 No csur 27584 ℕscnns 28249 2sc2s 28339 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-ot 4584 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-nadd 8587 df-no 27587 df-slt 27588 df-bday 27589 df-sle 27690 df-sslt 27727 df-scut 27729 df-0s 27774 df-1s 27775 df-made 27794 df-old 27795 df-left 27797 df-right 27798 df-norec2 27898 df-adds 27909 df-n0s 28250 df-nns 28251 df-2s 28340 |
| This theorem is referenced by: n0seo 28350 zseo 28351 nohalf 28353 pw2recs 28367 pw2divscld 28368 pw2divsmuld 28369 pw2divscan3d 28370 pw2divscan2d 28371 pw2divsassd 28372 pw2divscan4d 28373 pw2gt0divsd 28374 pw2ge0divsd 28375 pw2divsrecd 28376 pw2divsnegd 28378 pw2sltdivmuld 28379 pw2sltmuldiv2d 28380 avgslt1d 28382 avgslt2d 28383 halfcut 28384 addhalfcut 28385 pw2cut 28386 pw2cutp1 28387 pw2cut2 28388 zzs12 28391 zs12addscl 28393 zs12half 28396 zs12zodd 28398 zs12ge0 28399 zs12bday 28400 |
| Copyright terms: Public domain | W3C validator |