![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nzadd | Structured version Visualization version GIF version |
Description: The sum of a real number not being an integer and an integer is not an integer. (Contributed by AV, 19-Jul-2021.) |
Ref | Expression |
---|---|
nzadd | ⊢ ((𝐴 ∈ (ℝ ∖ ℤ) ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3957 | . . 3 ⊢ (𝐴 ∈ (ℝ ∖ ℤ) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ)) | |
2 | zre 12606 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
3 | readdcl 11230 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
4 | 2, 3 | sylan2 591 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ) |
5 | 4 | adantlr 713 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ) ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ) |
6 | zsubcl 12648 | . . . . . . . . . . 11 ⊢ (((𝐴 + 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) − 𝐵) ∈ ℤ) | |
7 | 6 | expcom 412 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℤ → ((𝐴 + 𝐵) ∈ ℤ → ((𝐴 + 𝐵) − 𝐵) ∈ ℤ)) |
8 | 7 | adantl 480 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℤ → ((𝐴 + 𝐵) − 𝐵) ∈ ℤ)) |
9 | recn 11237 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
10 | zcn 12607 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℂ) | |
11 | pncan 11505 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) | |
12 | 9, 10, 11 | syl2an 594 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
13 | 12 | eleq1d 2811 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (((𝐴 + 𝐵) − 𝐵) ∈ ℤ ↔ 𝐴 ∈ ℤ)) |
14 | 8, 13 | sylibd 238 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℤ → 𝐴 ∈ ℤ)) |
15 | 14 | con3d 152 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (¬ 𝐴 ∈ ℤ → ¬ (𝐴 + 𝐵) ∈ ℤ)) |
16 | 15 | ex 411 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ ℤ → (¬ 𝐴 ∈ ℤ → ¬ (𝐴 + 𝐵) ∈ ℤ))) |
17 | 16 | com23 86 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℤ → (𝐵 ∈ ℤ → ¬ (𝐴 + 𝐵) ∈ ℤ))) |
18 | 17 | imp31 416 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ) ∧ 𝐵 ∈ ℤ) → ¬ (𝐴 + 𝐵) ∈ ℤ) |
19 | 5, 18 | jca 510 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ) ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℝ ∧ ¬ (𝐴 + 𝐵) ∈ ℤ)) |
20 | 1, 19 | sylanb 579 | . 2 ⊢ ((𝐴 ∈ (ℝ ∖ ℤ) ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℝ ∧ ¬ (𝐴 + 𝐵) ∈ ℤ)) |
21 | eldif 3957 | . 2 ⊢ ((𝐴 + 𝐵) ∈ (ℝ ∖ ℤ) ↔ ((𝐴 + 𝐵) ∈ ℝ ∧ ¬ (𝐴 + 𝐵) ∈ ℤ)) | |
22 | 20, 21 | sylibr 233 | 1 ⊢ ((𝐴 ∈ (ℝ ∖ ℤ) ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℤ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∖ cdif 3944 (class class class)co 7414 ℂcc 11145 ℝcr 11146 + caddc 11150 − cmin 11483 ℤcz 12602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6303 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11485 df-neg 11486 df-nn 12257 df-n0 12517 df-z 12603 |
This theorem is referenced by: dvdsaddre2b 16302 |
Copyright terms: Public domain | W3C validator |