MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phssipval Structured version   Visualization version   GIF version

Theorem phssipval 20344
Description: The inner product on a subspace in terms of the inner product on the parent space. (Contributed by NM, 28-Jan-2008.) (Revised by AV, 19-Oct-2021.)
Hypotheses
Ref Expression
ssipeq.x 𝑋 = (𝑊s 𝑈)
ssipeq.i , = (·𝑖𝑊)
ssipeq.p 𝑃 = (·𝑖𝑋)
ssipeq.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
phssipval (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ (𝐴𝑈𝐵𝑈)) → (𝐴𝑃𝐵) = (𝐴 , 𝐵))

Proof of Theorem phssipval
StepHypRef Expression
1 ssipeq.x . . . 4 𝑋 = (𝑊s 𝑈)
2 ssipeq.i . . . 4 , = (·𝑖𝑊)
3 ssipeq.p . . . 4 𝑃 = (·𝑖𝑋)
41, 2, 3ssipeq 20343 . . 3 (𝑈𝑆𝑃 = , )
54oveqd 7157 . 2 (𝑈𝑆 → (𝐴𝑃𝐵) = (𝐴 , 𝐵))
65ad2antlr 726 1 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ (𝐴𝑈𝐵𝑈)) → (𝐴𝑃𝐵) = (𝐴 , 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2114  cfv 6334  (class class class)co 7140  s cress 16475  ·𝑖cip 16561  LSubSpclss 19694  PreHilcphl 20311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-ip 16574
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator