MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resub Structured version   Visualization version   GIF version

Theorem resub 14476
Description: Real part distributes over subtraction. (Contributed by NM, 17-Mar-2005.)
Assertion
Ref Expression
resub ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵)))

Proof of Theorem resub
StepHypRef Expression
1 negcl 10875 . . . 4 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
2 readd 14475 . . . 4 ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → (ℜ‘(𝐴 + -𝐵)) = ((ℜ‘𝐴) + (ℜ‘-𝐵)))
31, 2sylan2 592 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 + -𝐵)) = ((ℜ‘𝐴) + (ℜ‘-𝐵)))
4 reneg 14474 . . . . 5 (𝐵 ∈ ℂ → (ℜ‘-𝐵) = -(ℜ‘𝐵))
54adantl 482 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘-𝐵) = -(ℜ‘𝐵))
65oveq2d 7161 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) + (ℜ‘-𝐵)) = ((ℜ‘𝐴) + -(ℜ‘𝐵)))
73, 6eqtrd 2856 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 + -𝐵)) = ((ℜ‘𝐴) + -(ℜ‘𝐵)))
8 negsub 10923 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
98fveq2d 6668 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 + -𝐵)) = (ℜ‘(𝐴𝐵)))
10 recl 14459 . . . 4 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
1110recnd 10658 . . 3 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
12 recl 14459 . . . 4 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
1312recnd 10658 . . 3 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℂ)
14 negsub 10923 . . 3 (((ℜ‘𝐴) ∈ ℂ ∧ (ℜ‘𝐵) ∈ ℂ) → ((ℜ‘𝐴) + -(ℜ‘𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵)))
1511, 13, 14syl2an 595 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) + -(ℜ‘𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵)))
167, 9, 153eqtr3d 2864 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  cfv 6349  (class class class)co 7145  cc 10524   + caddc 10529  cmin 10859  -cneg 10860  cre 14446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-2 11689  df-cj 14448  df-re 14449  df-im 14450
This theorem is referenced by:  resubd  14565  recn2  14947  caucvgr  15022  tanregt0  25050  logcnlem4  25155  isosctrlem1  25323  acoscos  25398  acosbnd  25405  atanlogsublem  25420  isosctrlem1ALT  41148
  Copyright terms: Public domain W3C validator