Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resub | Structured version Visualization version GIF version |
Description: Real part distributes over subtraction. (Contributed by NM, 17-Mar-2005.) |
Ref | Expression |
---|---|
resub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 − 𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negcl 11078 | . . . 4 ⊢ (𝐵 ∈ ℂ → -𝐵 ∈ ℂ) | |
2 | readd 14689 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → (ℜ‘(𝐴 + -𝐵)) = ((ℜ‘𝐴) + (ℜ‘-𝐵))) | |
3 | 1, 2 | sylan2 596 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 + -𝐵)) = ((ℜ‘𝐴) + (ℜ‘-𝐵))) |
4 | reneg 14688 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (ℜ‘-𝐵) = -(ℜ‘𝐵)) | |
5 | 4 | adantl 485 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘-𝐵) = -(ℜ‘𝐵)) |
6 | 5 | oveq2d 7229 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) + (ℜ‘-𝐵)) = ((ℜ‘𝐴) + -(ℜ‘𝐵))) |
7 | 3, 6 | eqtrd 2777 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 + -𝐵)) = ((ℜ‘𝐴) + -(ℜ‘𝐵))) |
8 | negsub 11126 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
9 | 8 | fveq2d 6721 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 + -𝐵)) = (ℜ‘(𝐴 − 𝐵))) |
10 | recl 14673 | . . . 4 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
11 | 10 | recnd 10861 | . . 3 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ) |
12 | recl 14673 | . . . 4 ⊢ (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ) | |
13 | 12 | recnd 10861 | . . 3 ⊢ (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℂ) |
14 | negsub 11126 | . . 3 ⊢ (((ℜ‘𝐴) ∈ ℂ ∧ (ℜ‘𝐵) ∈ ℂ) → ((ℜ‘𝐴) + -(ℜ‘𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵))) | |
15 | 11, 13, 14 | syl2an 599 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) + -(ℜ‘𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵))) |
16 | 7, 9, 15 | 3eqtr3d 2785 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 − 𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 + caddc 10732 − cmin 11062 -cneg 11063 ℜcre 14660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-2 11893 df-cj 14662 df-re 14663 df-im 14664 |
This theorem is referenced by: resubd 14779 recn2 15162 caucvgr 15239 tanregt0 25428 logcnlem4 25533 isosctrlem1 25701 acoscos 25776 acosbnd 25783 atanlogsublem 25798 isosctrlem1ALT 42227 |
Copyright terms: Public domain | W3C validator |