MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recn2 Structured version   Visualization version   GIF version

Theorem recn2 14739
Description: The real part function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
Assertion
Ref Expression
recn2 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((ℜ‘𝑧) − (ℜ‘𝐴))) < 𝑥))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝐴,𝑧
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem recn2
StepHypRef Expression
1 ref 14259 . . 3 ℜ:ℂ⟶ℝ
2 ax-resscn 10329 . . 3 ℝ ⊆ ℂ
3 fss 6304 . . 3 ((ℜ:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → ℜ:ℂ⟶ℂ)
41, 2, 3mp2an 682 . 2 ℜ:ℂ⟶ℂ
5 resub 14274 . . . 4 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (ℜ‘(𝑧𝐴)) = ((ℜ‘𝑧) − (ℜ‘𝐴)))
65fveq2d 6450 . . 3 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘(ℜ‘(𝑧𝐴))) = (abs‘((ℜ‘𝑧) − (ℜ‘𝐴))))
7 subcl 10621 . . . 4 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑧𝐴) ∈ ℂ)
8 absrele 14455 . . . 4 ((𝑧𝐴) ∈ ℂ → (abs‘(ℜ‘(𝑧𝐴))) ≤ (abs‘(𝑧𝐴)))
97, 8syl 17 . . 3 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘(ℜ‘(𝑧𝐴))) ≤ (abs‘(𝑧𝐴)))
106, 9eqbrtrrd 4910 . 2 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((ℜ‘𝑧) − (ℜ‘𝐴))) ≤ (abs‘(𝑧𝐴)))
114, 10cn1lem 14736 1 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((ℜ‘𝑧) − (ℜ‘𝐴))) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wcel 2106  wral 3089  wrex 3090  wss 3791   class class class wbr 4886  wf 6131  cfv 6135  (class class class)co 6922  cc 10270  cr 10271   < clt 10411  cle 10412  cmin 10606  +crp 12137  cre 14244  abscabs 14381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-seq 13120  df-exp 13179  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383
This theorem is referenced by:  climre  14744  rlimre  14749  recncf  23113
  Copyright terms: Public domain W3C validator