MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmcvg Structured version   Visualization version   GIF version

Theorem lmmcvg 23856
Description: Convergence property of a converging sequence. (Contributed by NM, 1-Jun-2007.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmbr.2 𝐽 = (MetOpen‘𝐷)
lmmbr.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
lmmbr3.5 𝑍 = (ℤ𝑀)
lmmbr3.6 (𝜑𝑀 ∈ ℤ)
lmmbrf.7 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
lmmcvg.8 (𝜑𝐹(⇝𝑡𝐽)𝑃)
lmmcvg.9 (𝜑𝑅 ∈ ℝ+)
Assertion
Ref Expression
lmmcvg (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝑋 ∧ (𝐴𝐷𝑃) < 𝑅))
Distinct variable groups:   𝑗,𝑘,𝐷   𝑗,𝐹,𝑘   𝑃,𝑗,𝑘   𝑗,𝑋,𝑘   𝑗,𝑀   𝜑,𝑗,𝑘   𝑅,𝑗,𝑘   𝑗,𝑍,𝑘
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐽(𝑗,𝑘)   𝑀(𝑘)

Proof of Theorem lmmcvg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 5061 . . . . 5 (𝑥 = 𝑅 → (((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ ((𝐹𝑘)𝐷𝑃) < 𝑅))
213anbi3d 1436 . . . 4 (𝑥 = 𝑅 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅)))
32rexralbidv 3299 . . 3 (𝑥 = 𝑅 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅)))
4 lmmcvg.8 . . . . 5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
5 lmmbr.2 . . . . . 6 𝐽 = (MetOpen‘𝐷)
6 lmmbr.3 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
7 lmmbr3.5 . . . . . 6 𝑍 = (ℤ𝑀)
8 lmmbr3.6 . . . . . 6 (𝜑𝑀 ∈ ℤ)
95, 6, 7, 8lmmbr3 23855 . . . . 5 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
104, 9mpbid 234 . . . 4 (𝜑 → (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
1110simp3d 1139 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))
12 lmmcvg.9 . . 3 (𝜑𝑅 ∈ ℝ+)
133, 11, 12rspcdva 3623 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅))
147uztrn2 12254 . . . . . 6 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
15 3simpc 1145 . . . . . . 7 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅) → ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅))
16 lmmbrf.7 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
1716eleq1d 2895 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐹𝑘) ∈ 𝑋𝐴𝑋))
1816oveq1d 7163 . . . . . . . . 9 ((𝜑𝑘𝑍) → ((𝐹𝑘)𝐷𝑃) = (𝐴𝐷𝑃))
1918breq1d 5067 . . . . . . . 8 ((𝜑𝑘𝑍) → (((𝐹𝑘)𝐷𝑃) < 𝑅 ↔ (𝐴𝐷𝑃) < 𝑅))
2017, 19anbi12d 632 . . . . . . 7 ((𝜑𝑘𝑍) → (((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅) ↔ (𝐴𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)))
2115, 20syl5ib 246 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅) → (𝐴𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)))
2214, 21sylan2 594 . . . . 5 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅) → (𝐴𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)))
2322anassrs 470 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅) → (𝐴𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)))
2423ralimdva 3175 . . 3 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅) → ∀𝑘 ∈ (ℤ𝑗)(𝐴𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)))
2524reximdva 3272 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)))
2613, 25mpd 15 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝑋 ∧ (𝐴𝐷𝑃) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1531  wcel 2108  wral 3136  wrex 3137   class class class wbr 5057  dom cdm 5548  cfv 6348  (class class class)co 7148  pm cpm 8399  cc 10527   < clt 10667  cz 11973  cuz 12235  +crp 12381  ∞Metcxmet 20522  MetOpencmopn 20527  𝑡clm 21826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-map 8400  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-topgen 16709  df-psmet 20529  df-xmet 20530  df-bl 20532  df-mopn 20533  df-top 21494  df-topon 21511  df-bases 21546  df-lm 21829
This theorem is referenced by:  bfplem2  35093
  Copyright terms: Public domain W3C validator