| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmmcvg | Structured version Visualization version GIF version | ||
| Description: Convergence property of a converging sequence. (Contributed by NM, 1-Jun-2007.) (Revised by Mario Carneiro, 1-May-2014.) |
| Ref | Expression |
|---|---|
| lmmbr.2 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| lmmbr.3 | ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| lmmbr3.5 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| lmmbr3.6 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| lmmbrf.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
| lmmcvg.8 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
| lmmcvg.9 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| lmmcvg | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5123 | . . . . 5 ⊢ (𝑥 = 𝑅 → (((𝐹‘𝑘)𝐷𝑃) < 𝑥 ↔ ((𝐹‘𝑘)𝐷𝑃) < 𝑅)) | |
| 2 | 1 | 3anbi3d 1444 | . . . 4 ⊢ (𝑥 = 𝑅 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅))) |
| 3 | 2 | rexralbidv 3207 | . . 3 ⊢ (𝑥 = 𝑅 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅))) |
| 4 | lmmcvg.8 | . . . . 5 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
| 5 | lmmbr.2 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 6 | lmmbr.3 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | |
| 7 | lmmbr3.5 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 8 | lmmbr3.6 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 9 | 5, 6, 7, 8 | lmmbr3 25212 | . . . . 5 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)))) |
| 10 | 4, 9 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
| 11 | 10 | simp3d 1144 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)) |
| 12 | lmmcvg.9 | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
| 13 | 3, 11, 12 | rspcdva 3602 | . 2 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅)) |
| 14 | 7 | uztrn2 12871 | . . . . . 6 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
| 15 | 3simpc 1150 | . . . . . . 7 ⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅) → ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅)) | |
| 16 | lmmbrf.7 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
| 17 | 16 | eleq1d 2819 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) ∈ 𝑋 ↔ 𝐴 ∈ 𝑋)) |
| 18 | 16 | oveq1d 7420 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘)𝐷𝑃) = (𝐴𝐷𝑃)) |
| 19 | 18 | breq1d 5129 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝐹‘𝑘)𝐷𝑃) < 𝑅 ↔ (𝐴𝐷𝑃) < 𝑅)) |
| 20 | 17, 19 | anbi12d 632 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅))) |
| 21 | 15, 20 | imbitrid 244 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅) → (𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅))) |
| 22 | 14, 21 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅) → (𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅))) |
| 23 | 22 | anassrs 467 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅) → (𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅))) |
| 24 | 23 | ralimdva 3152 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅))) |
| 25 | 24 | reximdva 3153 | . 2 ⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅))) |
| 26 | 13, 25 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 class class class wbr 5119 dom cdm 5654 ‘cfv 6531 (class class class)co 7405 ↑pm cpm 8841 ℂcc 11127 < clt 11269 ℤcz 12588 ℤ≥cuz 12852 ℝ+crp 13008 ∞Metcxmet 21300 MetOpencmopn 21305 ⇝𝑡clm 23164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-topgen 17457 df-psmet 21307 df-xmet 21308 df-bl 21310 df-mopn 21311 df-top 22832 df-topon 22849 df-bases 22884 df-lm 23167 |
| This theorem is referenced by: bfplem2 37847 |
| Copyright terms: Public domain | W3C validator |