MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmcvg Structured version   Visualization version   GIF version

Theorem lmmcvg 25280
Description: Convergence property of a converging sequence. (Contributed by NM, 1-Jun-2007.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmbr.2 𝐽 = (MetOpen‘𝐷)
lmmbr.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
lmmbr3.5 𝑍 = (ℤ𝑀)
lmmbr3.6 (𝜑𝑀 ∈ ℤ)
lmmbrf.7 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
lmmcvg.8 (𝜑𝐹(⇝𝑡𝐽)𝑃)
lmmcvg.9 (𝜑𝑅 ∈ ℝ+)
Assertion
Ref Expression
lmmcvg (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝑋 ∧ (𝐴𝐷𝑃) < 𝑅))
Distinct variable groups:   𝑗,𝑘,𝐷   𝑗,𝐹,𝑘   𝑃,𝑗,𝑘   𝑗,𝑋,𝑘   𝑗,𝑀   𝜑,𝑗,𝑘   𝑅,𝑗,𝑘   𝑗,𝑍,𝑘
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐽(𝑗,𝑘)   𝑀(𝑘)

Proof of Theorem lmmcvg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 5157 . . . . 5 (𝑥 = 𝑅 → (((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ ((𝐹𝑘)𝐷𝑃) < 𝑅))
213anbi3d 1439 . . . 4 (𝑥 = 𝑅 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅)))
32rexralbidv 3211 . . 3 (𝑥 = 𝑅 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅)))
4 lmmcvg.8 . . . . 5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
5 lmmbr.2 . . . . . 6 𝐽 = (MetOpen‘𝐷)
6 lmmbr.3 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
7 lmmbr3.5 . . . . . 6 𝑍 = (ℤ𝑀)
8 lmmbr3.6 . . . . . 6 (𝜑𝑀 ∈ ℤ)
95, 6, 7, 8lmmbr3 25279 . . . . 5 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
104, 9mpbid 231 . . . 4 (𝜑 → (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
1110simp3d 1141 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))
12 lmmcvg.9 . . 3 (𝜑𝑅 ∈ ℝ+)
133, 11, 12rspcdva 3609 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅))
147uztrn2 12893 . . . . . 6 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
15 3simpc 1147 . . . . . . 7 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅) → ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅))
16 lmmbrf.7 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
1716eleq1d 2811 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐹𝑘) ∈ 𝑋𝐴𝑋))
1816oveq1d 7439 . . . . . . . . 9 ((𝜑𝑘𝑍) → ((𝐹𝑘)𝐷𝑃) = (𝐴𝐷𝑃))
1918breq1d 5163 . . . . . . . 8 ((𝜑𝑘𝑍) → (((𝐹𝑘)𝐷𝑃) < 𝑅 ↔ (𝐴𝐷𝑃) < 𝑅))
2017, 19anbi12d 630 . . . . . . 7 ((𝜑𝑘𝑍) → (((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅) ↔ (𝐴𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)))
2115, 20imbitrid 243 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅) → (𝐴𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)))
2214, 21sylan2 591 . . . . 5 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅) → (𝐴𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)))
2322anassrs 466 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅) → (𝐴𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)))
2423ralimdva 3157 . . 3 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅) → ∀𝑘 ∈ (ℤ𝑗)(𝐴𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)))
2524reximdva 3158 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)))
2613, 25mpd 15 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝑋 ∧ (𝐴𝐷𝑃) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  wrex 3060   class class class wbr 5153  dom cdm 5682  cfv 6554  (class class class)co 7424  pm cpm 8856  cc 11156   < clt 11298  cz 12610  cuz 12874  +crp 13028  ∞Metcxmet 21328  MetOpencmopn 21333  𝑡clm 23221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-map 8857  df-pm 8858  df-en 8975  df-dom 8976  df-sdom 8977  df-sup 9485  df-inf 9486  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-n0 12525  df-z 12611  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-topgen 17458  df-psmet 21335  df-xmet 21336  df-bl 21338  df-mopn 21339  df-top 22887  df-topon 22904  df-bases 22940  df-lm 23224
This theorem is referenced by:  bfplem2  37524
  Copyright terms: Public domain W3C validator