| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmmcvg | Structured version Visualization version GIF version | ||
| Description: Convergence property of a converging sequence. (Contributed by NM, 1-Jun-2007.) (Revised by Mario Carneiro, 1-May-2014.) |
| Ref | Expression |
|---|---|
| lmmbr.2 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| lmmbr.3 | ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| lmmbr3.5 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| lmmbr3.6 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| lmmbrf.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
| lmmcvg.8 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
| lmmcvg.9 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| lmmcvg | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5111 | . . . . 5 ⊢ (𝑥 = 𝑅 → (((𝐹‘𝑘)𝐷𝑃) < 𝑥 ↔ ((𝐹‘𝑘)𝐷𝑃) < 𝑅)) | |
| 2 | 1 | 3anbi3d 1444 | . . . 4 ⊢ (𝑥 = 𝑅 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅))) |
| 3 | 2 | rexralbidv 3203 | . . 3 ⊢ (𝑥 = 𝑅 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅))) |
| 4 | lmmcvg.8 | . . . . 5 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
| 5 | lmmbr.2 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 6 | lmmbr.3 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | |
| 7 | lmmbr3.5 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 8 | lmmbr3.6 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 9 | 5, 6, 7, 8 | lmmbr3 25160 | . . . . 5 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)))) |
| 10 | 4, 9 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
| 11 | 10 | simp3d 1144 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)) |
| 12 | lmmcvg.9 | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
| 13 | 3, 11, 12 | rspcdva 3589 | . 2 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅)) |
| 14 | 7 | uztrn2 12812 | . . . . . 6 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
| 15 | 3simpc 1150 | . . . . . . 7 ⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅) → ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅)) | |
| 16 | lmmbrf.7 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
| 17 | 16 | eleq1d 2813 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) ∈ 𝑋 ↔ 𝐴 ∈ 𝑋)) |
| 18 | 16 | oveq1d 7402 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘)𝐷𝑃) = (𝐴𝐷𝑃)) |
| 19 | 18 | breq1d 5117 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝐹‘𝑘)𝐷𝑃) < 𝑅 ↔ (𝐴𝐷𝑃) < 𝑅)) |
| 20 | 17, 19 | anbi12d 632 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅))) |
| 21 | 15, 20 | imbitrid 244 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅) → (𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅))) |
| 22 | 14, 21 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅) → (𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅))) |
| 23 | 22 | anassrs 467 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅) → (𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅))) |
| 24 | 23 | ralimdva 3145 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅))) |
| 25 | 24 | reximdva 3146 | . 2 ⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅))) |
| 26 | 13, 25 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5107 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 ↑pm cpm 8800 ℂcc 11066 < clt 11208 ℤcz 12529 ℤ≥cuz 12793 ℝ+crp 12951 ∞Metcxmet 21249 MetOpencmopn 21254 ⇝𝑡clm 23113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-bases 22833 df-lm 23116 |
| This theorem is referenced by: bfplem2 37817 |
| Copyright terms: Public domain | W3C validator |