![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmmcvg | Structured version Visualization version GIF version |
Description: Convergence property of a converging sequence. (Contributed by NM, 1-Jun-2007.) (Revised by Mario Carneiro, 1-May-2014.) |
Ref | Expression |
---|---|
lmmbr.2 | ⊢ 𝐽 = (MetOpen‘𝐷) |
lmmbr.3 | ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
lmmbr3.5 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
lmmbr3.6 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
lmmbrf.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
lmmcvg.8 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
lmmcvg.9 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
Ref | Expression |
---|---|
lmmcvg | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4790 | . . . . 5 ⊢ (𝑥 = 𝑅 → (((𝐹‘𝑘)𝐷𝑃) < 𝑥 ↔ ((𝐹‘𝑘)𝐷𝑃) < 𝑅)) | |
2 | 1 | 3anbi3d 1553 | . . . 4 ⊢ (𝑥 = 𝑅 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅))) |
3 | 2 | rexralbidv 3206 | . . 3 ⊢ (𝑥 = 𝑅 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅))) |
4 | lmmcvg.8 | . . . . 5 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
5 | lmmbr.2 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
6 | lmmbr.3 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | |
7 | lmmbr3.5 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
8 | lmmbr3.6 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
9 | 5, 6, 7, 8 | lmmbr3 23270 | . . . . 5 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)))) |
10 | 4, 9 | mpbid 222 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
11 | 10 | simp3d 1138 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)) |
12 | lmmcvg.9 | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
13 | 3, 11, 12 | rspcdva 3466 | . 2 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅)) |
14 | 7 | uztrn2 11904 | . . . . . 6 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
15 | 3simpc 1146 | . . . . . . 7 ⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅) → ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅)) | |
16 | lmmbrf.7 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
17 | 16 | eleq1d 2835 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) ∈ 𝑋 ↔ 𝐴 ∈ 𝑋)) |
18 | 16 | oveq1d 6806 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘)𝐷𝑃) = (𝐴𝐷𝑃)) |
19 | 18 | breq1d 4796 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝐹‘𝑘)𝐷𝑃) < 𝑅 ↔ (𝐴𝐷𝑃) < 𝑅)) |
20 | 17, 19 | anbi12d 616 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅))) |
21 | 15, 20 | syl5ib 234 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅) → (𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅))) |
22 | 14, 21 | sylan2 580 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅) → (𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅))) |
23 | 22 | anassrs 453 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅) → (𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅))) |
24 | 23 | ralimdva 3111 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅))) |
25 | 24 | reximdva 3165 | . 2 ⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑅) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅))) |
26 | 13, 25 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ∃wrex 3062 class class class wbr 4786 dom cdm 5249 ‘cfv 6029 (class class class)co 6791 ↑pm cpm 8008 ℂcc 10134 < clt 10274 ℤcz 11577 ℤ≥cuz 11886 ℝ+crp 12028 ∞Metcxmt 19939 MetOpencmopn 19944 ⇝𝑡clm 21244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7094 ax-cnex 10192 ax-resscn 10193 ax-1cn 10194 ax-icn 10195 ax-addcl 10196 ax-addrcl 10197 ax-mulcl 10198 ax-mulrcl 10199 ax-mulcom 10200 ax-addass 10201 ax-mulass 10202 ax-distr 10203 ax-i2m1 10204 ax-1ne0 10205 ax-1rid 10206 ax-rnegex 10207 ax-rrecex 10208 ax-cnre 10209 ax-pre-lttri 10210 ax-pre-lttrn 10211 ax-pre-ltadd 10212 ax-pre-mulgt0 10213 ax-pre-sup 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5821 df-ord 5867 df-on 5868 df-lim 5869 df-suc 5870 df-iota 5992 df-fun 6031 df-fn 6032 df-f 6033 df-f1 6034 df-fo 6035 df-f1o 6036 df-fv 6037 df-riota 6752 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-om 7211 df-1st 7313 df-2nd 7314 df-wrecs 7557 df-recs 7619 df-rdg 7657 df-er 7894 df-map 8009 df-pm 8010 df-en 8108 df-dom 8109 df-sdom 8110 df-sup 8502 df-inf 8503 df-pnf 10276 df-mnf 10277 df-xr 10278 df-ltxr 10279 df-le 10280 df-sub 10468 df-neg 10469 df-div 10885 df-nn 11221 df-2 11279 df-n0 11493 df-z 11578 df-uz 11887 df-q 11990 df-rp 12029 df-xneg 12144 df-xadd 12145 df-xmul 12146 df-topgen 16305 df-psmet 19946 df-xmet 19947 df-bl 19949 df-mopn 19950 df-top 20912 df-topon 20929 df-bases 20964 df-lm 21247 |
This theorem is referenced by: bfplem2 33947 |
Copyright terms: Public domain | W3C validator |