MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibnd Structured version   Visualization version   GIF version

Theorem pntibnd 27532
Description: Lemma for pnt 27553. Establish smallness of 𝑅 on an interval. Lemma 10.6.2 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypothesis
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntibnd 𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)
Distinct variable groups:   𝑥,𝑧,𝑦   𝑢,𝑘,𝑥,𝑦,𝑧   𝑒,𝑐,𝑘,𝑙,𝑢,𝑥,𝑦,𝑧,𝑅   𝑒,𝑎,𝑘,𝑢,𝑥,𝑦,𝑧
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntibnd
Dummy variables 𝑛 𝑚 𝑣 𝑏 𝑑 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pntlem1.r . . 3 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
21pntrmax 27503 . 2 𝑑 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑
31pntpbnd 27527 . 2 𝑏 ∈ ℝ+𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)
4 reeanv 3205 . . 3 (∃𝑑 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)) ↔ (∃𝑑 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∃𝑏 ∈ ℝ+𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)))
5 2rp 12897 . . . . . . . . 9 2 ∈ ℝ+
6 rpmulcl 12917 . . . . . . . . 9 ((2 ∈ ℝ+𝑏 ∈ ℝ+) → (2 · 𝑏) ∈ ℝ+)
75, 6mpan 690 . . . . . . . 8 (𝑏 ∈ ℝ+ → (2 · 𝑏) ∈ ℝ+)
8 2re 12206 . . . . . . . . 9 2 ∈ ℝ
9 1lt2 12298 . . . . . . . . 9 1 < 2
10 rplogcl 26541 . . . . . . . . 9 ((2 ∈ ℝ ∧ 1 < 2) → (log‘2) ∈ ℝ+)
118, 9, 10mp2an 692 . . . . . . . 8 (log‘2) ∈ ℝ+
12 rpaddcl 12916 . . . . . . . 8 (((2 · 𝑏) ∈ ℝ+ ∧ (log‘2) ∈ ℝ+) → ((2 · 𝑏) + (log‘2)) ∈ ℝ+)
137, 11, 12sylancl 586 . . . . . . 7 (𝑏 ∈ ℝ+ → ((2 · 𝑏) + (log‘2)) ∈ ℝ+)
1413ad2antlr 727 . . . . . 6 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓))) → ((2 · 𝑏) + (log‘2)) ∈ ℝ+)
15 id 22 . . . . . . . 8 (𝑑 ∈ ℝ+𝑑 ∈ ℝ+)
16 eqid 2733 . . . . . . . 8 ((1 / 4) / (𝑑 + 3)) = ((1 / 4) / (𝑑 + 3))
171, 15, 16pntibndlem1 27528 . . . . . . 7 (𝑑 ∈ ℝ+ → ((1 / 4) / (𝑑 + 3)) ∈ (0(,)1))
1817ad2antrr 726 . . . . . 6 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓))) → ((1 / 4) / (𝑑 + 3)) ∈ (0(,)1))
19 elioore 13277 . . . . . . . . . . . . . . 15 (𝑒 ∈ (0(,)1) → 𝑒 ∈ ℝ)
20 eliooord 13307 . . . . . . . . . . . . . . . 16 (𝑒 ∈ (0(,)1) → (0 < 𝑒𝑒 < 1))
2120simpld 494 . . . . . . . . . . . . . . 15 (𝑒 ∈ (0(,)1) → 0 < 𝑒)
2219, 21elrpd 12933 . . . . . . . . . . . . . 14 (𝑒 ∈ (0(,)1) → 𝑒 ∈ ℝ+)
2322rphalfcld 12948 . . . . . . . . . . . . 13 (𝑒 ∈ (0(,)1) → (𝑒 / 2) ∈ ℝ+)
2423rpred 12936 . . . . . . . . . . . 12 (𝑒 ∈ (0(,)1) → (𝑒 / 2) ∈ ℝ)
2523rpgt0d 12939 . . . . . . . . . . . 12 (𝑒 ∈ (0(,)1) → 0 < (𝑒 / 2))
26 1red 11120 . . . . . . . . . . . . 13 (𝑒 ∈ (0(,)1) → 1 ∈ ℝ)
27 rphalflt 12923 . . . . . . . . . . . . . 14 (𝑒 ∈ ℝ+ → (𝑒 / 2) < 𝑒)
2822, 27syl 17 . . . . . . . . . . . . 13 (𝑒 ∈ (0(,)1) → (𝑒 / 2) < 𝑒)
2920simprd 495 . . . . . . . . . . . . 13 (𝑒 ∈ (0(,)1) → 𝑒 < 1)
3024, 19, 26, 28, 29lttrd 11281 . . . . . . . . . . . 12 (𝑒 ∈ (0(,)1) → (𝑒 / 2) < 1)
31 0xr 11166 . . . . . . . . . . . . 13 0 ∈ ℝ*
32 1xr 11178 . . . . . . . . . . . . 13 1 ∈ ℝ*
33 elioo2 13288 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑒 / 2) ∈ (0(,)1) ↔ ((𝑒 / 2) ∈ ℝ ∧ 0 < (𝑒 / 2) ∧ (𝑒 / 2) < 1)))
3431, 32, 33mp2an 692 . . . . . . . . . . . 12 ((𝑒 / 2) ∈ (0(,)1) ↔ ((𝑒 / 2) ∈ ℝ ∧ 0 < (𝑒 / 2) ∧ (𝑒 / 2) < 1))
3524, 25, 30, 34syl3anbrc 1344 . . . . . . . . . . 11 (𝑒 ∈ (0(,)1) → (𝑒 / 2) ∈ (0(,)1))
3635adantl 481 . . . . . . . . . 10 ((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (𝑒 / 2) ∈ (0(,)1))
37 oveq2 7360 . . . . . . . . . . . . . . 15 (𝑓 = (𝑒 / 2) → (𝑏 / 𝑓) = (𝑏 / (𝑒 / 2)))
3837fveq2d 6832 . . . . . . . . . . . . . 14 (𝑓 = (𝑒 / 2) → (exp‘(𝑏 / 𝑓)) = (exp‘(𝑏 / (𝑒 / 2))))
3938oveq1d 7367 . . . . . . . . . . . . 13 (𝑓 = (𝑒 / 2) → ((exp‘(𝑏 / 𝑓))[,)+∞) = ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞))
40 breq2 5097 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑒 / 2) → ((abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓 ↔ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))
4140anbi2d 630 . . . . . . . . . . . . . . 15 (𝑓 = (𝑒 / 2) → (((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) ↔ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4241rexbidv 3157 . . . . . . . . . . . . . 14 (𝑓 = (𝑒 / 2) → (∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) ↔ ∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4342ralbidv 3156 . . . . . . . . . . . . 13 (𝑓 = (𝑒 / 2) → (∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) ↔ ∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4439, 43raleqbidv 3313 . . . . . . . . . . . 12 (𝑓 = (𝑒 / 2) → (∀𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) ↔ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4544rexbidv 3157 . . . . . . . . . . 11 (𝑓 = (𝑒 / 2) → (∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) ↔ ∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4645rspcv 3569 . . . . . . . . . 10 ((𝑒 / 2) ∈ (0(,)1) → (∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) → ∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4736, 46syl 17 . . . . . . . . 9 ((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) → ∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
48 simp-4l 782 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → 𝑑 ∈ ℝ+)
49 simpllr 775 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑)
50 simplr 768 . . . . . . . . . . . 12 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) → 𝑏 ∈ ℝ+)
5150ad2antrr 726 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → 𝑏 ∈ ℝ+)
52 eqid 2733 . . . . . . . . . . 11 (exp‘(𝑏 / (𝑒 / 2))) = (exp‘(𝑏 / (𝑒 / 2)))
53 eqid 2733 . . . . . . . . . . 11 ((2 · 𝑏) + (log‘2)) = ((2 · 𝑏) + (log‘2))
54 simplr 768 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → 𝑒 ∈ (0(,)1))
55 simprl 770 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → 𝑔 ∈ ℝ+)
56 simprr 772 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))
571, 48, 16, 49, 51, 52, 53, 54, 55, 56pntibndlem3 27531 . . . . . . . . . 10 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
5857rexlimdvaa 3135 . . . . . . . . 9 ((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
5947, 58syld 47 . . . . . . . 8 ((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
6059ralrimdva 3133 . . . . . . 7 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) → (∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
6160impr 454 . . . . . 6 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓))) → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
62 fvoveq1 7375 . . . . . . . . . . 11 (𝑐 = ((2 · 𝑏) + (log‘2)) → (exp‘(𝑐 / 𝑒)) = (exp‘(((2 · 𝑏) + (log‘2)) / 𝑒)))
6362oveq1d 7367 . . . . . . . . . 10 (𝑐 = ((2 · 𝑏) + (log‘2)) → ((exp‘(𝑐 / 𝑒))[,)+∞) = ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞))
6463raleqdv 3293 . . . . . . . . 9 (𝑐 = ((2 · 𝑏) + (log‘2)) → (∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
6564rexbidv 3157 . . . . . . . 8 (𝑐 = ((2 · 𝑏) + (log‘2)) → (∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
6665ralbidv 3156 . . . . . . 7 (𝑐 = ((2 · 𝑏) + (log‘2)) → (∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
67 oveq1 7359 . . . . . . . . . . . . . . . 16 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (𝑙 · 𝑒) = (((1 / 4) / (𝑑 + 3)) · 𝑒))
6867oveq2d 7368 . . . . . . . . . . . . . . 15 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (1 + (𝑙 · 𝑒)) = (1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)))
6968oveq1d 7367 . . . . . . . . . . . . . 14 (𝑙 = ((1 / 4) / (𝑑 + 3)) → ((1 + (𝑙 · 𝑒)) · 𝑧) = ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))
7069breq1d 5103 . . . . . . . . . . . . 13 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦) ↔ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)))
7170anbi2d 630 . . . . . . . . . . . 12 (𝑙 = ((1 / 4) / (𝑑 + 3)) → ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ↔ (𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦))))
7269oveq2d 7368 . . . . . . . . . . . . 13 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧)) = (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧)))
7372raleqdv 3293 . . . . . . . . . . . 12 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒 ↔ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
7471, 73anbi12d 632 . . . . . . . . . . 11 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
7574rexbidv 3157 . . . . . . . . . 10 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
7675ralbidv 3156 . . . . . . . . 9 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
7776rexralbidv 3199 . . . . . . . 8 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
7877ralbidv 3156 . . . . . . 7 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
7966, 78rspc2ev 3586 . . . . . 6 ((((2 · 𝑏) + (log‘2)) ∈ ℝ+ ∧ ((1 / 4) / (𝑑 + 3)) ∈ (0(,)1) ∧ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)) → ∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
8014, 18, 61, 79syl3anc 1373 . . . . 5 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓))) → ∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
8180ex 412 . . . 4 ((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) → ((∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)) → ∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
8281rexlimivv 3175 . . 3 (∃𝑑 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)) → ∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
834, 82sylbir 235 . 2 ((∃𝑑 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∃𝑏 ∈ ℝ+𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)) → ∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
842, 3, 83mp2an 692 1 𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wrex 3057   class class class wbr 5093  cmpt 5174  cfv 6486  (class class class)co 7352  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018  +∞cpnf 11150  *cxr 11152   < clt 11153  cle 11154  cmin 11351   / cdiv 11781  cn 12132  2c2 12187  3c3 12188  4c4 12189  +crp 12892  (,)cioo 13247  [,)cico 13249  [,]cicc 13250  abscabs 15143  expce 15970  logclog 26491  ψcchp 27031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-disj 5061  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-xnn0 12462  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-o1 15399  df-lo1 15400  df-sum 15596  df-ef 15976  df-e 15977  df-sin 15978  df-cos 15979  df-tan 15980  df-pi 15981  df-dvds 16166  df-gcd 16408  df-prm 16585  df-pc 16751  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-cmp 23303  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-ulm 26314  df-log 26493  df-cxp 26494  df-atan 26805  df-em 26931  df-cht 27035  df-vma 27036  df-chp 27037  df-ppi 27038  df-mu 27039
This theorem is referenced by:  pnt3  27551
  Copyright terms: Public domain W3C validator