MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibnd Structured version   Visualization version   GIF version

Theorem pntibnd 27622
Description: Lemma for pnt 27643. Establish smallness of 𝑅 on an interval. Lemma 10.6.2 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypothesis
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntibnd 𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)
Distinct variable groups:   𝑥,𝑧,𝑦   𝑢,𝑘,𝑥,𝑦,𝑧   𝑒,𝑐,𝑘,𝑙,𝑢,𝑥,𝑦,𝑧,𝑅   𝑒,𝑎,𝑘,𝑢,𝑥,𝑦,𝑧
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntibnd
Dummy variables 𝑛 𝑚 𝑣 𝑏 𝑑 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pntlem1.r . . 3 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
21pntrmax 27593 . 2 𝑑 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑
31pntpbnd 27617 . 2 𝑏 ∈ ℝ+𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)
4 reeanv 3217 . . 3 (∃𝑑 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)) ↔ (∃𝑑 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∃𝑏 ∈ ℝ+𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)))
5 2rp 13033 . . . . . . . . 9 2 ∈ ℝ+
6 rpmulcl 13051 . . . . . . . . 9 ((2 ∈ ℝ+𝑏 ∈ ℝ+) → (2 · 𝑏) ∈ ℝ+)
75, 6mpan 688 . . . . . . . 8 (𝑏 ∈ ℝ+ → (2 · 𝑏) ∈ ℝ+)
8 2re 12338 . . . . . . . . 9 2 ∈ ℝ
9 1lt2 12435 . . . . . . . . 9 1 < 2
10 rplogcl 26631 . . . . . . . . 9 ((2 ∈ ℝ ∧ 1 < 2) → (log‘2) ∈ ℝ+)
118, 9, 10mp2an 690 . . . . . . . 8 (log‘2) ∈ ℝ+
12 rpaddcl 13050 . . . . . . . 8 (((2 · 𝑏) ∈ ℝ+ ∧ (log‘2) ∈ ℝ+) → ((2 · 𝑏) + (log‘2)) ∈ ℝ+)
137, 11, 12sylancl 584 . . . . . . 7 (𝑏 ∈ ℝ+ → ((2 · 𝑏) + (log‘2)) ∈ ℝ+)
1413ad2antlr 725 . . . . . 6 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓))) → ((2 · 𝑏) + (log‘2)) ∈ ℝ+)
15 id 22 . . . . . . . 8 (𝑑 ∈ ℝ+𝑑 ∈ ℝ+)
16 eqid 2726 . . . . . . . 8 ((1 / 4) / (𝑑 + 3)) = ((1 / 4) / (𝑑 + 3))
171, 15, 16pntibndlem1 27618 . . . . . . 7 (𝑑 ∈ ℝ+ → ((1 / 4) / (𝑑 + 3)) ∈ (0(,)1))
1817ad2antrr 724 . . . . . 6 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓))) → ((1 / 4) / (𝑑 + 3)) ∈ (0(,)1))
19 elioore 13408 . . . . . . . . . . . . . . 15 (𝑒 ∈ (0(,)1) → 𝑒 ∈ ℝ)
20 eliooord 13437 . . . . . . . . . . . . . . . 16 (𝑒 ∈ (0(,)1) → (0 < 𝑒𝑒 < 1))
2120simpld 493 . . . . . . . . . . . . . . 15 (𝑒 ∈ (0(,)1) → 0 < 𝑒)
2219, 21elrpd 13067 . . . . . . . . . . . . . 14 (𝑒 ∈ (0(,)1) → 𝑒 ∈ ℝ+)
2322rphalfcld 13082 . . . . . . . . . . . . 13 (𝑒 ∈ (0(,)1) → (𝑒 / 2) ∈ ℝ+)
2423rpred 13070 . . . . . . . . . . . 12 (𝑒 ∈ (0(,)1) → (𝑒 / 2) ∈ ℝ)
2523rpgt0d 13073 . . . . . . . . . . . 12 (𝑒 ∈ (0(,)1) → 0 < (𝑒 / 2))
26 1red 11265 . . . . . . . . . . . . 13 (𝑒 ∈ (0(,)1) → 1 ∈ ℝ)
27 rphalflt 13057 . . . . . . . . . . . . . 14 (𝑒 ∈ ℝ+ → (𝑒 / 2) < 𝑒)
2822, 27syl 17 . . . . . . . . . . . . 13 (𝑒 ∈ (0(,)1) → (𝑒 / 2) < 𝑒)
2920simprd 494 . . . . . . . . . . . . 13 (𝑒 ∈ (0(,)1) → 𝑒 < 1)
3024, 19, 26, 28, 29lttrd 11425 . . . . . . . . . . . 12 (𝑒 ∈ (0(,)1) → (𝑒 / 2) < 1)
31 0xr 11311 . . . . . . . . . . . . 13 0 ∈ ℝ*
32 1xr 11323 . . . . . . . . . . . . 13 1 ∈ ℝ*
33 elioo2 13419 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑒 / 2) ∈ (0(,)1) ↔ ((𝑒 / 2) ∈ ℝ ∧ 0 < (𝑒 / 2) ∧ (𝑒 / 2) < 1)))
3431, 32, 33mp2an 690 . . . . . . . . . . . 12 ((𝑒 / 2) ∈ (0(,)1) ↔ ((𝑒 / 2) ∈ ℝ ∧ 0 < (𝑒 / 2) ∧ (𝑒 / 2) < 1))
3524, 25, 30, 34syl3anbrc 1340 . . . . . . . . . . 11 (𝑒 ∈ (0(,)1) → (𝑒 / 2) ∈ (0(,)1))
3635adantl 480 . . . . . . . . . 10 ((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (𝑒 / 2) ∈ (0(,)1))
37 oveq2 7432 . . . . . . . . . . . . . . 15 (𝑓 = (𝑒 / 2) → (𝑏 / 𝑓) = (𝑏 / (𝑒 / 2)))
3837fveq2d 6905 . . . . . . . . . . . . . 14 (𝑓 = (𝑒 / 2) → (exp‘(𝑏 / 𝑓)) = (exp‘(𝑏 / (𝑒 / 2))))
3938oveq1d 7439 . . . . . . . . . . . . 13 (𝑓 = (𝑒 / 2) → ((exp‘(𝑏 / 𝑓))[,)+∞) = ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞))
40 breq2 5157 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑒 / 2) → ((abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓 ↔ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))
4140anbi2d 628 . . . . . . . . . . . . . . 15 (𝑓 = (𝑒 / 2) → (((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) ↔ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4241rexbidv 3169 . . . . . . . . . . . . . 14 (𝑓 = (𝑒 / 2) → (∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) ↔ ∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4342ralbidv 3168 . . . . . . . . . . . . 13 (𝑓 = (𝑒 / 2) → (∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) ↔ ∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4439, 43raleqbidv 3330 . . . . . . . . . . . 12 (𝑓 = (𝑒 / 2) → (∀𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) ↔ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4544rexbidv 3169 . . . . . . . . . . 11 (𝑓 = (𝑒 / 2) → (∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) ↔ ∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4645rspcv 3604 . . . . . . . . . 10 ((𝑒 / 2) ∈ (0(,)1) → (∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) → ∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4736, 46syl 17 . . . . . . . . 9 ((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) → ∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
48 simp-4l 781 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → 𝑑 ∈ ℝ+)
49 simpllr 774 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑)
50 simplr 767 . . . . . . . . . . . 12 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) → 𝑏 ∈ ℝ+)
5150ad2antrr 724 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → 𝑏 ∈ ℝ+)
52 eqid 2726 . . . . . . . . . . 11 (exp‘(𝑏 / (𝑒 / 2))) = (exp‘(𝑏 / (𝑒 / 2)))
53 eqid 2726 . . . . . . . . . . 11 ((2 · 𝑏) + (log‘2)) = ((2 · 𝑏) + (log‘2))
54 simplr 767 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → 𝑒 ∈ (0(,)1))
55 simprl 769 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → 𝑔 ∈ ℝ+)
56 simprr 771 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))
571, 48, 16, 49, 51, 52, 53, 54, 55, 56pntibndlem3 27621 . . . . . . . . . 10 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
5857rexlimdvaa 3146 . . . . . . . . 9 ((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
5947, 58syld 47 . . . . . . . 8 ((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
6059ralrimdva 3144 . . . . . . 7 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) → (∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
6160impr 453 . . . . . 6 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓))) → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
62 fvoveq1 7447 . . . . . . . . . . 11 (𝑐 = ((2 · 𝑏) + (log‘2)) → (exp‘(𝑐 / 𝑒)) = (exp‘(((2 · 𝑏) + (log‘2)) / 𝑒)))
6362oveq1d 7439 . . . . . . . . . 10 (𝑐 = ((2 · 𝑏) + (log‘2)) → ((exp‘(𝑐 / 𝑒))[,)+∞) = ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞))
6463raleqdv 3315 . . . . . . . . 9 (𝑐 = ((2 · 𝑏) + (log‘2)) → (∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
6564rexbidv 3169 . . . . . . . 8 (𝑐 = ((2 · 𝑏) + (log‘2)) → (∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
6665ralbidv 3168 . . . . . . 7 (𝑐 = ((2 · 𝑏) + (log‘2)) → (∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
67 oveq1 7431 . . . . . . . . . . . . . . . 16 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (𝑙 · 𝑒) = (((1 / 4) / (𝑑 + 3)) · 𝑒))
6867oveq2d 7440 . . . . . . . . . . . . . . 15 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (1 + (𝑙 · 𝑒)) = (1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)))
6968oveq1d 7439 . . . . . . . . . . . . . 14 (𝑙 = ((1 / 4) / (𝑑 + 3)) → ((1 + (𝑙 · 𝑒)) · 𝑧) = ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))
7069breq1d 5163 . . . . . . . . . . . . 13 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦) ↔ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)))
7170anbi2d 628 . . . . . . . . . . . 12 (𝑙 = ((1 / 4) / (𝑑 + 3)) → ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ↔ (𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦))))
7269oveq2d 7440 . . . . . . . . . . . . 13 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧)) = (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧)))
7372raleqdv 3315 . . . . . . . . . . . 12 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒 ↔ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
7471, 73anbi12d 630 . . . . . . . . . . 11 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
7574rexbidv 3169 . . . . . . . . . 10 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
7675ralbidv 3168 . . . . . . . . 9 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
7776rexralbidv 3211 . . . . . . . 8 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
7877ralbidv 3168 . . . . . . 7 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
7966, 78rspc2ev 3621 . . . . . 6 ((((2 · 𝑏) + (log‘2)) ∈ ℝ+ ∧ ((1 / 4) / (𝑑 + 3)) ∈ (0(,)1) ∧ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)) → ∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
8014, 18, 61, 79syl3anc 1368 . . . . 5 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓))) → ∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
8180ex 411 . . . 4 ((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) → ((∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)) → ∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
8281rexlimivv 3190 . . 3 (∃𝑑 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)) → ∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
834, 82sylbir 234 . 2 ((∃𝑑 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∃𝑏 ∈ ℝ+𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)) → ∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
842, 3, 83mp2an 690 1 𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  wrex 3060   class class class wbr 5153  cmpt 5236  cfv 6554  (class class class)co 7424  cr 11157  0cc0 11158  1c1 11159   + caddc 11161   · cmul 11163  +∞cpnf 11295  *cxr 11297   < clt 11298  cle 11299  cmin 11494   / cdiv 11921  cn 12264  2c2 12319  3c3 12320  4c4 12321  +crp 13028  (,)cioo 13378  [,)cico 13380  [,]cicc 13381  abscabs 15239  expce 16063  logclog 26581  ψcchp 27121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-addf 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-disj 5119  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-oadd 8500  df-er 8734  df-map 8857  df-pm 8858  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-fi 9454  df-sup 9485  df-inf 9486  df-oi 9553  df-dju 9944  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12597  df-z 12611  df-dec 12730  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-ioo 13382  df-ioc 13383  df-ico 13384  df-icc 13385  df-fz 13539  df-fzo 13682  df-fl 13812  df-mod 13890  df-seq 14022  df-exp 14082  df-fac 14291  df-bc 14320  df-hash 14348  df-shft 15072  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-limsup 15473  df-clim 15490  df-rlim 15491  df-o1 15492  df-lo1 15493  df-sum 15691  df-ef 16069  df-e 16070  df-sin 16071  df-cos 16072  df-tan 16073  df-pi 16074  df-dvds 16257  df-gcd 16495  df-prm 16673  df-pc 16839  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-hom 17290  df-cco 17291  df-rest 17437  df-topn 17438  df-0g 17456  df-gsum 17457  df-topgen 17458  df-pt 17459  df-prds 17462  df-xrs 17517  df-qtop 17522  df-imas 17523  df-xps 17525  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-mulg 19062  df-cntz 19311  df-cmn 19780  df-psmet 21335  df-xmet 21336  df-met 21337  df-bl 21338  df-mopn 21339  df-fbas 21340  df-fg 21341  df-cnfld 21344  df-top 22887  df-topon 22904  df-topsp 22926  df-bases 22940  df-cld 23014  df-ntr 23015  df-cls 23016  df-nei 23093  df-lp 23131  df-perf 23132  df-cn 23222  df-cnp 23223  df-haus 23310  df-cmp 23382  df-tx 23557  df-hmeo 23750  df-fil 23841  df-fm 23933  df-flim 23934  df-flf 23935  df-xms 24317  df-ms 24318  df-tms 24319  df-cncf 24889  df-limc 25886  df-dv 25887  df-ulm 26406  df-log 26583  df-cxp 26584  df-atan 26895  df-em 27021  df-cht 27125  df-vma 27126  df-chp 27127  df-ppi 27128  df-mu 27129
This theorem is referenced by:  pnt3  27641
  Copyright terms: Public domain W3C validator