MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibnd Structured version   Visualization version   GIF version

Theorem pntibnd 25886
Description: Lemma for pnt 25907. Establish smallness of 𝑅 on an interval. Lemma 10.6.2 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypothesis
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntibnd 𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)
Distinct variable groups:   𝑥,𝑧,𝑦   𝑢,𝑘,𝑥,𝑦,𝑧   𝑒,𝑐,𝑘,𝑙,𝑢,𝑥,𝑦,𝑧,𝑅   𝑒,𝑎,𝑘,𝑢,𝑥,𝑦,𝑧
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntibnd
Dummy variables 𝑛 𝑚 𝑣 𝑏 𝑑 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pntlem1.r . . 3 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
21pntrmax 25857 . 2 𝑑 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑
31pntpbnd 25881 . 2 𝑏 ∈ ℝ+𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)
4 reeanv 3310 . . 3 (∃𝑑 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)) ↔ (∃𝑑 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∃𝑏 ∈ ℝ+𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)))
5 2rp 12215 . . . . . . . . 9 2 ∈ ℝ+
6 rpmulcl 12235 . . . . . . . . 9 ((2 ∈ ℝ+𝑏 ∈ ℝ+) → (2 · 𝑏) ∈ ℝ+)
75, 6mpan 678 . . . . . . . 8 (𝑏 ∈ ℝ+ → (2 · 𝑏) ∈ ℝ+)
8 2re 11520 . . . . . . . . 9 2 ∈ ℝ
9 1lt2 11624 . . . . . . . . 9 1 < 2
10 rplogcl 24903 . . . . . . . . 9 ((2 ∈ ℝ ∧ 1 < 2) → (log‘2) ∈ ℝ+)
118, 9, 10mp2an 680 . . . . . . . 8 (log‘2) ∈ ℝ+
12 rpaddcl 12234 . . . . . . . 8 (((2 · 𝑏) ∈ ℝ+ ∧ (log‘2) ∈ ℝ+) → ((2 · 𝑏) + (log‘2)) ∈ ℝ+)
137, 11, 12sylancl 578 . . . . . . 7 (𝑏 ∈ ℝ+ → ((2 · 𝑏) + (log‘2)) ∈ ℝ+)
1413ad2antlr 715 . . . . . 6 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓))) → ((2 · 𝑏) + (log‘2)) ∈ ℝ+)
15 id 22 . . . . . . . 8 (𝑑 ∈ ℝ+𝑑 ∈ ℝ+)
16 eqid 2780 . . . . . . . 8 ((1 / 4) / (𝑑 + 3)) = ((1 / 4) / (𝑑 + 3))
171, 15, 16pntibndlem1 25882 . . . . . . 7 (𝑑 ∈ ℝ+ → ((1 / 4) / (𝑑 + 3)) ∈ (0(,)1))
1817ad2antrr 714 . . . . . 6 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓))) → ((1 / 4) / (𝑑 + 3)) ∈ (0(,)1))
19 elioore 12590 . . . . . . . . . . . . . . 15 (𝑒 ∈ (0(,)1) → 𝑒 ∈ ℝ)
20 eliooord 12618 . . . . . . . . . . . . . . . 16 (𝑒 ∈ (0(,)1) → (0 < 𝑒𝑒 < 1))
2120simpld 487 . . . . . . . . . . . . . . 15 (𝑒 ∈ (0(,)1) → 0 < 𝑒)
2219, 21elrpd 12251 . . . . . . . . . . . . . 14 (𝑒 ∈ (0(,)1) → 𝑒 ∈ ℝ+)
2322rphalfcld 12266 . . . . . . . . . . . . 13 (𝑒 ∈ (0(,)1) → (𝑒 / 2) ∈ ℝ+)
2423rpred 12254 . . . . . . . . . . . 12 (𝑒 ∈ (0(,)1) → (𝑒 / 2) ∈ ℝ)
2523rpgt0d 12257 . . . . . . . . . . . 12 (𝑒 ∈ (0(,)1) → 0 < (𝑒 / 2))
26 1red 10446 . . . . . . . . . . . . 13 (𝑒 ∈ (0(,)1) → 1 ∈ ℝ)
27 rphalflt 12241 . . . . . . . . . . . . . 14 (𝑒 ∈ ℝ+ → (𝑒 / 2) < 𝑒)
2822, 27syl 17 . . . . . . . . . . . . 13 (𝑒 ∈ (0(,)1) → (𝑒 / 2) < 𝑒)
2920simprd 488 . . . . . . . . . . . . 13 (𝑒 ∈ (0(,)1) → 𝑒 < 1)
3024, 19, 26, 28, 29lttrd 10607 . . . . . . . . . . . 12 (𝑒 ∈ (0(,)1) → (𝑒 / 2) < 1)
31 0xr 10493 . . . . . . . . . . . . 13 0 ∈ ℝ*
32 1xr 10506 . . . . . . . . . . . . 13 1 ∈ ℝ*
33 elioo2 12601 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑒 / 2) ∈ (0(,)1) ↔ ((𝑒 / 2) ∈ ℝ ∧ 0 < (𝑒 / 2) ∧ (𝑒 / 2) < 1)))
3431, 32, 33mp2an 680 . . . . . . . . . . . 12 ((𝑒 / 2) ∈ (0(,)1) ↔ ((𝑒 / 2) ∈ ℝ ∧ 0 < (𝑒 / 2) ∧ (𝑒 / 2) < 1))
3524, 25, 30, 34syl3anbrc 1324 . . . . . . . . . . 11 (𝑒 ∈ (0(,)1) → (𝑒 / 2) ∈ (0(,)1))
3635adantl 474 . . . . . . . . . 10 ((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (𝑒 / 2) ∈ (0(,)1))
37 oveq2 6990 . . . . . . . . . . . . . . 15 (𝑓 = (𝑒 / 2) → (𝑏 / 𝑓) = (𝑏 / (𝑒 / 2)))
3837fveq2d 6508 . . . . . . . . . . . . . 14 (𝑓 = (𝑒 / 2) → (exp‘(𝑏 / 𝑓)) = (exp‘(𝑏 / (𝑒 / 2))))
3938oveq1d 6997 . . . . . . . . . . . . 13 (𝑓 = (𝑒 / 2) → ((exp‘(𝑏 / 𝑓))[,)+∞) = ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞))
40 breq2 4938 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑒 / 2) → ((abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓 ↔ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))
4140anbi2d 620 . . . . . . . . . . . . . . 15 (𝑓 = (𝑒 / 2) → (((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) ↔ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4241rexbidv 3244 . . . . . . . . . . . . . 14 (𝑓 = (𝑒 / 2) → (∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) ↔ ∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4342ralbidv 3149 . . . . . . . . . . . . 13 (𝑓 = (𝑒 / 2) → (∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) ↔ ∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4439, 43raleqbidv 3343 . . . . . . . . . . . 12 (𝑓 = (𝑒 / 2) → (∀𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) ↔ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4544rexbidv 3244 . . . . . . . . . . 11 (𝑓 = (𝑒 / 2) → (∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) ↔ ∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4645rspcv 3533 . . . . . . . . . 10 ((𝑒 / 2) ∈ (0(,)1) → (∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) → ∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4736, 46syl 17 . . . . . . . . 9 ((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) → ∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
48 simp-4l 771 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → 𝑑 ∈ ℝ+)
49 simpllr 764 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑)
50 simplr 757 . . . . . . . . . . . 12 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) → 𝑏 ∈ ℝ+)
5150ad2antrr 714 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → 𝑏 ∈ ℝ+)
52 eqid 2780 . . . . . . . . . . 11 (exp‘(𝑏 / (𝑒 / 2))) = (exp‘(𝑏 / (𝑒 / 2)))
53 eqid 2780 . . . . . . . . . . 11 ((2 · 𝑏) + (log‘2)) = ((2 · 𝑏) + (log‘2))
54 simplr 757 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → 𝑒 ∈ (0(,)1))
55 simprl 759 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → 𝑔 ∈ ℝ+)
56 simprr 761 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))
571, 48, 16, 49, 51, 52, 53, 54, 55, 56pntibndlem3 25885 . . . . . . . . . 10 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
5857rexlimdvaa 3232 . . . . . . . . 9 ((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
5947, 58syld 47 . . . . . . . 8 ((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
6059ralrimdva 3141 . . . . . . 7 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) → (∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
6160impr 447 . . . . . 6 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓))) → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
62 fvoveq1 7005 . . . . . . . . . . 11 (𝑐 = ((2 · 𝑏) + (log‘2)) → (exp‘(𝑐 / 𝑒)) = (exp‘(((2 · 𝑏) + (log‘2)) / 𝑒)))
6362oveq1d 6997 . . . . . . . . . 10 (𝑐 = ((2 · 𝑏) + (log‘2)) → ((exp‘(𝑐 / 𝑒))[,)+∞) = ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞))
6463raleqdv 3357 . . . . . . . . 9 (𝑐 = ((2 · 𝑏) + (log‘2)) → (∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
6564rexbidv 3244 . . . . . . . 8 (𝑐 = ((2 · 𝑏) + (log‘2)) → (∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
6665ralbidv 3149 . . . . . . 7 (𝑐 = ((2 · 𝑏) + (log‘2)) → (∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
67 oveq1 6989 . . . . . . . . . . . . . . . 16 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (𝑙 · 𝑒) = (((1 / 4) / (𝑑 + 3)) · 𝑒))
6867oveq2d 6998 . . . . . . . . . . . . . . 15 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (1 + (𝑙 · 𝑒)) = (1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)))
6968oveq1d 6997 . . . . . . . . . . . . . 14 (𝑙 = ((1 / 4) / (𝑑 + 3)) → ((1 + (𝑙 · 𝑒)) · 𝑧) = ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))
7069breq1d 4944 . . . . . . . . . . . . 13 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦) ↔ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)))
7170anbi2d 620 . . . . . . . . . . . 12 (𝑙 = ((1 / 4) / (𝑑 + 3)) → ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ↔ (𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦))))
7269oveq2d 6998 . . . . . . . . . . . . 13 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧)) = (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧)))
7372raleqdv 3357 . . . . . . . . . . . 12 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒 ↔ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
7471, 73anbi12d 622 . . . . . . . . . . 11 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
7574rexbidv 3244 . . . . . . . . . 10 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
7675ralbidv 3149 . . . . . . . . 9 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
7776rexralbidv 3248 . . . . . . . 8 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
7877ralbidv 3149 . . . . . . 7 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
7966, 78rspc2ev 3552 . . . . . 6 ((((2 · 𝑏) + (log‘2)) ∈ ℝ+ ∧ ((1 / 4) / (𝑑 + 3)) ∈ (0(,)1) ∧ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)) → ∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
8014, 18, 61, 79syl3anc 1352 . . . . 5 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓))) → ∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
8180ex 405 . . . 4 ((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) → ((∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)) → ∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
8281rexlimivv 3239 . . 3 (∃𝑑 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)) → ∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
834, 82sylbir 227 . 2 ((∃𝑑 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∃𝑏 ∈ ℝ+𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)) → ∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
842, 3, 83mp2an 680 1 𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1069   = wceq 1508  wcel 2051  wral 3090  wrex 3091   class class class wbr 4934  cmpt 5013  cfv 6193  (class class class)co 6982  cr 10340  0cc0 10341  1c1 10342   + caddc 10344   · cmul 10346  +∞cpnf 10477  *cxr 10479   < clt 10480  cle 10481  cmin 10676   / cdiv 11104  cn 11445  2c2 11501  3c3 11502  4c4 11503  +crp 12210  (,)cioo 12560  [,)cico 12562  [,]cicc 12563  abscabs 14460  expce 15281  logclog 24854  ψcchp 25387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-inf2 8904  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418  ax-pre-sup 10419  ax-addf 10420  ax-mulf 10421
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-iin 4800  df-disj 4903  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-se 5371  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-isom 6202  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-of 7233  df-om 7403  df-1st 7507  df-2nd 7508  df-supp 7640  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-1o 7911  df-2o 7912  df-oadd 7915  df-er 8095  df-map 8214  df-pm 8215  df-ixp 8266  df-en 8313  df-dom 8314  df-sdom 8315  df-fin 8316  df-fsupp 8635  df-fi 8676  df-sup 8707  df-inf 8708  df-oi 8775  df-dju 9130  df-card 9168  df-cda 9394  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-div 11105  df-nn 11446  df-2 11509  df-3 11510  df-4 11511  df-5 11512  df-6 11513  df-7 11514  df-8 11515  df-9 11516  df-n0 11714  df-xnn0 11786  df-z 11800  df-dec 11918  df-uz 12065  df-q 12169  df-rp 12211  df-xneg 12330  df-xadd 12331  df-xmul 12332  df-ioo 12564  df-ioc 12565  df-ico 12566  df-icc 12567  df-fz 12715  df-fzo 12856  df-fl 12983  df-mod 13059  df-seq 13191  df-exp 13251  df-fac 13455  df-bc 13484  df-hash 13512  df-shft 14293  df-cj 14325  df-re 14326  df-im 14327  df-sqrt 14461  df-abs 14462  df-limsup 14695  df-clim 14712  df-rlim 14713  df-o1 14714  df-lo1 14715  df-sum 14910  df-ef 15287  df-e 15288  df-sin 15289  df-cos 15290  df-tan 15291  df-pi 15292  df-dvds 15474  df-gcd 15710  df-prm 15878  df-pc 16036  df-struct 16347  df-ndx 16348  df-slot 16349  df-base 16351  df-sets 16352  df-ress 16353  df-plusg 16440  df-mulr 16441  df-starv 16442  df-sca 16443  df-vsca 16444  df-ip 16445  df-tset 16446  df-ple 16447  df-ds 16449  df-unif 16450  df-hom 16451  df-cco 16452  df-rest 16558  df-topn 16559  df-0g 16577  df-gsum 16578  df-topgen 16579  df-pt 16580  df-prds 16583  df-xrs 16637  df-qtop 16642  df-imas 16643  df-xps 16645  df-mre 16727  df-mrc 16728  df-acs 16730  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-submnd 17816  df-mulg 18024  df-cntz 18230  df-cmn 18680  df-psmet 20254  df-xmet 20255  df-met 20256  df-bl 20257  df-mopn 20258  df-fbas 20259  df-fg 20260  df-cnfld 20263  df-top 21221  df-topon 21238  df-topsp 21260  df-bases 21273  df-cld 21346  df-ntr 21347  df-cls 21348  df-nei 21425  df-lp 21463  df-perf 21464  df-cn 21554  df-cnp 21555  df-haus 21642  df-cmp 21714  df-tx 21889  df-hmeo 22082  df-fil 22173  df-fm 22265  df-flim 22266  df-flf 22267  df-xms 22648  df-ms 22649  df-tms 22650  df-cncf 23204  df-limc 24182  df-dv 24183  df-ulm 24683  df-log 24856  df-cxp 24857  df-atan 25161  df-em 25287  df-cht 25391  df-vma 25392  df-chp 25393  df-ppi 25394  df-mu 25395
This theorem is referenced by:  pnt3  25905
  Copyright terms: Public domain W3C validator