MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibnd Structured version   Visualization version   GIF version

Theorem pntibnd 26741
Description: Lemma for pnt 26762. Establish smallness of 𝑅 on an interval. Lemma 10.6.2 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypothesis
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntibnd 𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)
Distinct variable groups:   𝑥,𝑧,𝑦   𝑢,𝑘,𝑥,𝑦,𝑧   𝑒,𝑐,𝑘,𝑙,𝑢,𝑥,𝑦,𝑧,𝑅   𝑒,𝑎,𝑘,𝑢,𝑥,𝑦,𝑧
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntibnd
Dummy variables 𝑛 𝑚 𝑣 𝑏 𝑑 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pntlem1.r . . 3 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
21pntrmax 26712 . 2 𝑑 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑
31pntpbnd 26736 . 2 𝑏 ∈ ℝ+𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)
4 reeanv 3294 . . 3 (∃𝑑 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)) ↔ (∃𝑑 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∃𝑏 ∈ ℝ+𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)))
5 2rp 12735 . . . . . . . . 9 2 ∈ ℝ+
6 rpmulcl 12753 . . . . . . . . 9 ((2 ∈ ℝ+𝑏 ∈ ℝ+) → (2 · 𝑏) ∈ ℝ+)
75, 6mpan 687 . . . . . . . 8 (𝑏 ∈ ℝ+ → (2 · 𝑏) ∈ ℝ+)
8 2re 12047 . . . . . . . . 9 2 ∈ ℝ
9 1lt2 12144 . . . . . . . . 9 1 < 2
10 rplogcl 25759 . . . . . . . . 9 ((2 ∈ ℝ ∧ 1 < 2) → (log‘2) ∈ ℝ+)
118, 9, 10mp2an 689 . . . . . . . 8 (log‘2) ∈ ℝ+
12 rpaddcl 12752 . . . . . . . 8 (((2 · 𝑏) ∈ ℝ+ ∧ (log‘2) ∈ ℝ+) → ((2 · 𝑏) + (log‘2)) ∈ ℝ+)
137, 11, 12sylancl 586 . . . . . . 7 (𝑏 ∈ ℝ+ → ((2 · 𝑏) + (log‘2)) ∈ ℝ+)
1413ad2antlr 724 . . . . . 6 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓))) → ((2 · 𝑏) + (log‘2)) ∈ ℝ+)
15 id 22 . . . . . . . 8 (𝑑 ∈ ℝ+𝑑 ∈ ℝ+)
16 eqid 2738 . . . . . . . 8 ((1 / 4) / (𝑑 + 3)) = ((1 / 4) / (𝑑 + 3))
171, 15, 16pntibndlem1 26737 . . . . . . 7 (𝑑 ∈ ℝ+ → ((1 / 4) / (𝑑 + 3)) ∈ (0(,)1))
1817ad2antrr 723 . . . . . 6 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓))) → ((1 / 4) / (𝑑 + 3)) ∈ (0(,)1))
19 elioore 13109 . . . . . . . . . . . . . . 15 (𝑒 ∈ (0(,)1) → 𝑒 ∈ ℝ)
20 eliooord 13138 . . . . . . . . . . . . . . . 16 (𝑒 ∈ (0(,)1) → (0 < 𝑒𝑒 < 1))
2120simpld 495 . . . . . . . . . . . . . . 15 (𝑒 ∈ (0(,)1) → 0 < 𝑒)
2219, 21elrpd 12769 . . . . . . . . . . . . . 14 (𝑒 ∈ (0(,)1) → 𝑒 ∈ ℝ+)
2322rphalfcld 12784 . . . . . . . . . . . . 13 (𝑒 ∈ (0(,)1) → (𝑒 / 2) ∈ ℝ+)
2423rpred 12772 . . . . . . . . . . . 12 (𝑒 ∈ (0(,)1) → (𝑒 / 2) ∈ ℝ)
2523rpgt0d 12775 . . . . . . . . . . . 12 (𝑒 ∈ (0(,)1) → 0 < (𝑒 / 2))
26 1red 10976 . . . . . . . . . . . . 13 (𝑒 ∈ (0(,)1) → 1 ∈ ℝ)
27 rphalflt 12759 . . . . . . . . . . . . . 14 (𝑒 ∈ ℝ+ → (𝑒 / 2) < 𝑒)
2822, 27syl 17 . . . . . . . . . . . . 13 (𝑒 ∈ (0(,)1) → (𝑒 / 2) < 𝑒)
2920simprd 496 . . . . . . . . . . . . 13 (𝑒 ∈ (0(,)1) → 𝑒 < 1)
3024, 19, 26, 28, 29lttrd 11136 . . . . . . . . . . . 12 (𝑒 ∈ (0(,)1) → (𝑒 / 2) < 1)
31 0xr 11022 . . . . . . . . . . . . 13 0 ∈ ℝ*
32 1xr 11034 . . . . . . . . . . . . 13 1 ∈ ℝ*
33 elioo2 13120 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑒 / 2) ∈ (0(,)1) ↔ ((𝑒 / 2) ∈ ℝ ∧ 0 < (𝑒 / 2) ∧ (𝑒 / 2) < 1)))
3431, 32, 33mp2an 689 . . . . . . . . . . . 12 ((𝑒 / 2) ∈ (0(,)1) ↔ ((𝑒 / 2) ∈ ℝ ∧ 0 < (𝑒 / 2) ∧ (𝑒 / 2) < 1))
3524, 25, 30, 34syl3anbrc 1342 . . . . . . . . . . 11 (𝑒 ∈ (0(,)1) → (𝑒 / 2) ∈ (0(,)1))
3635adantl 482 . . . . . . . . . 10 ((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (𝑒 / 2) ∈ (0(,)1))
37 oveq2 7283 . . . . . . . . . . . . . . 15 (𝑓 = (𝑒 / 2) → (𝑏 / 𝑓) = (𝑏 / (𝑒 / 2)))
3837fveq2d 6778 . . . . . . . . . . . . . 14 (𝑓 = (𝑒 / 2) → (exp‘(𝑏 / 𝑓)) = (exp‘(𝑏 / (𝑒 / 2))))
3938oveq1d 7290 . . . . . . . . . . . . 13 (𝑓 = (𝑒 / 2) → ((exp‘(𝑏 / 𝑓))[,)+∞) = ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞))
40 breq2 5078 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑒 / 2) → ((abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓 ↔ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))
4140anbi2d 629 . . . . . . . . . . . . . . 15 (𝑓 = (𝑒 / 2) → (((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) ↔ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4241rexbidv 3226 . . . . . . . . . . . . . 14 (𝑓 = (𝑒 / 2) → (∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) ↔ ∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4342ralbidv 3112 . . . . . . . . . . . . 13 (𝑓 = (𝑒 / 2) → (∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) ↔ ∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4439, 43raleqbidv 3336 . . . . . . . . . . . 12 (𝑓 = (𝑒 / 2) → (∀𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) ↔ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4544rexbidv 3226 . . . . . . . . . . 11 (𝑓 = (𝑒 / 2) → (∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) ↔ ∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4645rspcv 3557 . . . . . . . . . 10 ((𝑒 / 2) ∈ (0(,)1) → (∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) → ∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4736, 46syl 17 . . . . . . . . 9 ((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) → ∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
48 simp-4l 780 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → 𝑑 ∈ ℝ+)
49 simpllr 773 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑)
50 simplr 766 . . . . . . . . . . . 12 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) → 𝑏 ∈ ℝ+)
5150ad2antrr 723 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → 𝑏 ∈ ℝ+)
52 eqid 2738 . . . . . . . . . . 11 (exp‘(𝑏 / (𝑒 / 2))) = (exp‘(𝑏 / (𝑒 / 2)))
53 eqid 2738 . . . . . . . . . . 11 ((2 · 𝑏) + (log‘2)) = ((2 · 𝑏) + (log‘2))
54 simplr 766 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → 𝑒 ∈ (0(,)1))
55 simprl 768 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → 𝑔 ∈ ℝ+)
56 simprr 770 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))
571, 48, 16, 49, 51, 52, 53, 54, 55, 56pntibndlem3 26740 . . . . . . . . . 10 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
5857rexlimdvaa 3214 . . . . . . . . 9 ((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
5947, 58syld 47 . . . . . . . 8 ((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
6059ralrimdva 3106 . . . . . . 7 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) → (∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
6160impr 455 . . . . . 6 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓))) → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
62 fvoveq1 7298 . . . . . . . . . . 11 (𝑐 = ((2 · 𝑏) + (log‘2)) → (exp‘(𝑐 / 𝑒)) = (exp‘(((2 · 𝑏) + (log‘2)) / 𝑒)))
6362oveq1d 7290 . . . . . . . . . 10 (𝑐 = ((2 · 𝑏) + (log‘2)) → ((exp‘(𝑐 / 𝑒))[,)+∞) = ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞))
6463raleqdv 3348 . . . . . . . . 9 (𝑐 = ((2 · 𝑏) + (log‘2)) → (∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
6564rexbidv 3226 . . . . . . . 8 (𝑐 = ((2 · 𝑏) + (log‘2)) → (∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
6665ralbidv 3112 . . . . . . 7 (𝑐 = ((2 · 𝑏) + (log‘2)) → (∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
67 oveq1 7282 . . . . . . . . . . . . . . . 16 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (𝑙 · 𝑒) = (((1 / 4) / (𝑑 + 3)) · 𝑒))
6867oveq2d 7291 . . . . . . . . . . . . . . 15 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (1 + (𝑙 · 𝑒)) = (1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)))
6968oveq1d 7290 . . . . . . . . . . . . . 14 (𝑙 = ((1 / 4) / (𝑑 + 3)) → ((1 + (𝑙 · 𝑒)) · 𝑧) = ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))
7069breq1d 5084 . . . . . . . . . . . . 13 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦) ↔ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)))
7170anbi2d 629 . . . . . . . . . . . 12 (𝑙 = ((1 / 4) / (𝑑 + 3)) → ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ↔ (𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦))))
7269oveq2d 7291 . . . . . . . . . . . . 13 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧)) = (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧)))
7372raleqdv 3348 . . . . . . . . . . . 12 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒 ↔ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
7471, 73anbi12d 631 . . . . . . . . . . 11 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
7574rexbidv 3226 . . . . . . . . . 10 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
7675ralbidv 3112 . . . . . . . . 9 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
7776rexralbidv 3230 . . . . . . . 8 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
7877ralbidv 3112 . . . . . . 7 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
7966, 78rspc2ev 3572 . . . . . 6 ((((2 · 𝑏) + (log‘2)) ∈ ℝ+ ∧ ((1 / 4) / (𝑑 + 3)) ∈ (0(,)1) ∧ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)) → ∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
8014, 18, 61, 79syl3anc 1370 . . . . 5 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓))) → ∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
8180ex 413 . . . 4 ((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) → ((∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)) → ∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
8281rexlimivv 3221 . . 3 (∃𝑑 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)) → ∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
834, 82sylbir 234 . 2 ((∃𝑑 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∃𝑏 ∈ ℝ+𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)) → ∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
842, 3, 83mp2an 689 1 𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  3c3 12029  4c4 12030  +crp 12730  (,)cioo 13079  [,)cico 13081  [,]cicc 13082  abscabs 14945  expce 15771  logclog 25710  ψcchp 26242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-o1 15199  df-lo1 15200  df-sum 15398  df-ef 15777  df-e 15778  df-sin 15779  df-cos 15780  df-tan 15781  df-pi 15782  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-ulm 25536  df-log 25712  df-cxp 25713  df-atan 26017  df-em 26142  df-cht 26246  df-vma 26247  df-chp 26248  df-ppi 26249  df-mu 26250
This theorem is referenced by:  pnt3  26760
  Copyright terms: Public domain W3C validator