Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tsmsi | Structured version Visualization version GIF version |
Description: The property of being a sum of the sequence 𝐹 in the topological commutative monoid 𝐺. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
eltsms.b | ⊢ 𝐵 = (Base‘𝐺) |
eltsms.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
eltsms.s | ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) |
eltsms.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
eltsms.2 | ⊢ (𝜑 → 𝐺 ∈ TopSp) |
eltsms.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
eltsms.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
tsmsi.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐺 tsums 𝐹)) |
tsmsi.4 | ⊢ (𝜑 → 𝑈 ∈ 𝐽) |
tsmsi.5 | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
Ref | Expression |
---|---|
tsmsi | ⊢ (𝜑 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsmsi.5 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
2 | eleq2 2827 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝐶 ∈ 𝑢 ↔ 𝐶 ∈ 𝑈)) | |
3 | eleq2 2827 | . . . . . 6 ⊢ (𝑢 = 𝑈 → ((𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈)) | |
4 | 3 | imbi2d 340 | . . . . 5 ⊢ (𝑢 = 𝑈 → ((𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢) ↔ (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈))) |
5 | 4 | rexralbidv 3229 | . . . 4 ⊢ (𝑢 = 𝑈 → (∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢) ↔ ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈))) |
6 | 2, 5 | imbi12d 344 | . . 3 ⊢ (𝑢 = 𝑈 → ((𝐶 ∈ 𝑢 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)) ↔ (𝐶 ∈ 𝑈 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈)))) |
7 | tsmsi.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (𝐺 tsums 𝐹)) | |
8 | eltsms.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
9 | eltsms.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝐺) | |
10 | eltsms.s | . . . . . 6 ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) | |
11 | eltsms.1 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
12 | eltsms.2 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TopSp) | |
13 | eltsms.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
14 | eltsms.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
15 | 8, 9, 10, 11, 12, 13, 14 | eltsms 23192 | . . . . 5 ⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ (𝐶 ∈ 𝐵 ∧ ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢))))) |
16 | 7, 15 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ 𝐵 ∧ ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)))) |
17 | 16 | simprd 495 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢))) |
18 | tsmsi.4 | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐽) | |
19 | 6, 17, 18 | rspcdva 3554 | . 2 ⊢ (𝜑 → (𝐶 ∈ 𝑈 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈))) |
20 | 1, 19 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 ↾ cres 5582 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 Basecbs 16840 TopOpenctopn 17049 Σg cgsu 17068 CMndccmn 19301 TopSpctps 21989 tsums ctsu 23185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-0g 17069 df-gsum 17070 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-cntz 18838 df-cmn 19303 df-fbas 20507 df-fg 20508 df-top 21951 df-topon 21968 df-topsp 21990 df-ntr 22079 df-nei 22157 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-tsms 23186 |
This theorem is referenced by: tsmsxplem1 23212 |
Copyright terms: Public domain | W3C validator |