![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsmsi | Structured version Visualization version GIF version |
Description: The property of being a sum of the sequence πΉ in the topological commutative monoid πΊ. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
eltsms.b | β’ π΅ = (BaseβπΊ) |
eltsms.j | β’ π½ = (TopOpenβπΊ) |
eltsms.s | β’ π = (π« π΄ β© Fin) |
eltsms.1 | β’ (π β πΊ β CMnd) |
eltsms.2 | β’ (π β πΊ β TopSp) |
eltsms.a | β’ (π β π΄ β π) |
eltsms.f | β’ (π β πΉ:π΄βΆπ΅) |
tsmsi.3 | β’ (π β πΆ β (πΊ tsums πΉ)) |
tsmsi.4 | β’ (π β π β π½) |
tsmsi.5 | β’ (π β πΆ β π) |
Ref | Expression |
---|---|
tsmsi | β’ (π β βπ§ β π βπ¦ β π (π§ β π¦ β (πΊ Ξ£g (πΉ βΎ π¦)) β π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsmsi.5 | . 2 β’ (π β πΆ β π) | |
2 | eleq2 2814 | . . . 4 β’ (π’ = π β (πΆ β π’ β πΆ β π)) | |
3 | eleq2 2814 | . . . . . 6 β’ (π’ = π β ((πΊ Ξ£g (πΉ βΎ π¦)) β π’ β (πΊ Ξ£g (πΉ βΎ π¦)) β π)) | |
4 | 3 | imbi2d 340 | . . . . 5 β’ (π’ = π β ((π§ β π¦ β (πΊ Ξ£g (πΉ βΎ π¦)) β π’) β (π§ β π¦ β (πΊ Ξ£g (πΉ βΎ π¦)) β π))) |
5 | 4 | rexralbidv 3212 | . . . 4 β’ (π’ = π β (βπ§ β π βπ¦ β π (π§ β π¦ β (πΊ Ξ£g (πΉ βΎ π¦)) β π’) β βπ§ β π βπ¦ β π (π§ β π¦ β (πΊ Ξ£g (πΉ βΎ π¦)) β π))) |
6 | 2, 5 | imbi12d 344 | . . 3 β’ (π’ = π β ((πΆ β π’ β βπ§ β π βπ¦ β π (π§ β π¦ β (πΊ Ξ£g (πΉ βΎ π¦)) β π’)) β (πΆ β π β βπ§ β π βπ¦ β π (π§ β π¦ β (πΊ Ξ£g (πΉ βΎ π¦)) β π)))) |
7 | tsmsi.3 | . . . . 5 β’ (π β πΆ β (πΊ tsums πΉ)) | |
8 | eltsms.b | . . . . . 6 β’ π΅ = (BaseβπΊ) | |
9 | eltsms.j | . . . . . 6 β’ π½ = (TopOpenβπΊ) | |
10 | eltsms.s | . . . . . 6 β’ π = (π« π΄ β© Fin) | |
11 | eltsms.1 | . . . . . 6 β’ (π β πΊ β CMnd) | |
12 | eltsms.2 | . . . . . 6 β’ (π β πΊ β TopSp) | |
13 | eltsms.a | . . . . . 6 β’ (π β π΄ β π) | |
14 | eltsms.f | . . . . . 6 β’ (π β πΉ:π΄βΆπ΅) | |
15 | 8, 9, 10, 11, 12, 13, 14 | eltsms 23981 | . . . . 5 β’ (π β (πΆ β (πΊ tsums πΉ) β (πΆ β π΅ β§ βπ’ β π½ (πΆ β π’ β βπ§ β π βπ¦ β π (π§ β π¦ β (πΊ Ξ£g (πΉ βΎ π¦)) β π’))))) |
16 | 7, 15 | mpbid 231 | . . . 4 β’ (π β (πΆ β π΅ β§ βπ’ β π½ (πΆ β π’ β βπ§ β π βπ¦ β π (π§ β π¦ β (πΊ Ξ£g (πΉ βΎ π¦)) β π’)))) |
17 | 16 | simprd 495 | . . 3 β’ (π β βπ’ β π½ (πΆ β π’ β βπ§ β π βπ¦ β π (π§ β π¦ β (πΊ Ξ£g (πΉ βΎ π¦)) β π’))) |
18 | tsmsi.4 | . . 3 β’ (π β π β π½) | |
19 | 6, 17, 18 | rspcdva 3605 | . 2 β’ (π β (πΆ β π β βπ§ β π βπ¦ β π (π§ β π¦ β (πΊ Ξ£g (πΉ βΎ π¦)) β π))) |
20 | 1, 19 | mpd 15 | 1 β’ (π β βπ§ β π βπ¦ β π (π§ β π¦ β (πΊ Ξ£g (πΉ βΎ π¦)) β π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 βwral 3053 βwrex 3062 β© cin 3940 β wss 3941 π« cpw 4595 βΎ cres 5669 βΆwf 6530 βcfv 6534 (class class class)co 7402 Fincfn 8936 Basecbs 17149 TopOpenctopn 17372 Ξ£g cgsu 17391 CMndccmn 19696 TopSpctps 22778 tsums ctsu 23974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fsupp 9359 df-oi 9502 df-card 9931 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13486 df-fzo 13629 df-seq 13968 df-hash 14292 df-0g 17392 df-gsum 17393 df-mgm 18569 df-sgrp 18648 df-mnd 18664 df-cntz 19229 df-cmn 19698 df-fbas 21231 df-fg 21232 df-top 22740 df-topon 22757 df-topsp 22779 df-ntr 22868 df-nei 22946 df-fil 23694 df-fm 23786 df-flim 23787 df-flf 23788 df-tsms 23975 |
This theorem is referenced by: tsmsxplem1 24001 |
Copyright terms: Public domain | W3C validator |