| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsmsi | Structured version Visualization version GIF version | ||
| Description: The property of being a sum of the sequence 𝐹 in the topological commutative monoid 𝐺. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| eltsms.b | ⊢ 𝐵 = (Base‘𝐺) |
| eltsms.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
| eltsms.s | ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) |
| eltsms.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| eltsms.2 | ⊢ (𝜑 → 𝐺 ∈ TopSp) |
| eltsms.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| eltsms.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| tsmsi.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐺 tsums 𝐹)) |
| tsmsi.4 | ⊢ (𝜑 → 𝑈 ∈ 𝐽) |
| tsmsi.5 | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| tsmsi | ⊢ (𝜑 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmsi.5 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 2 | eleq2 2817 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝐶 ∈ 𝑢 ↔ 𝐶 ∈ 𝑈)) | |
| 3 | eleq2 2817 | . . . . . 6 ⊢ (𝑢 = 𝑈 → ((𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈)) | |
| 4 | 3 | imbi2d 340 | . . . . 5 ⊢ (𝑢 = 𝑈 → ((𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢) ↔ (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈))) |
| 5 | 4 | rexralbidv 3195 | . . . 4 ⊢ (𝑢 = 𝑈 → (∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢) ↔ ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈))) |
| 6 | 2, 5 | imbi12d 344 | . . 3 ⊢ (𝑢 = 𝑈 → ((𝐶 ∈ 𝑢 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)) ↔ (𝐶 ∈ 𝑈 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈)))) |
| 7 | tsmsi.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (𝐺 tsums 𝐹)) | |
| 8 | eltsms.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 9 | eltsms.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 10 | eltsms.s | . . . . . 6 ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) | |
| 11 | eltsms.1 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 12 | eltsms.2 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TopSp) | |
| 13 | eltsms.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 14 | eltsms.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 15 | 8, 9, 10, 11, 12, 13, 14 | eltsms 24036 | . . . . 5 ⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ (𝐶 ∈ 𝐵 ∧ ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢))))) |
| 16 | 7, 15 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ 𝐵 ∧ ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)))) |
| 17 | 16 | simprd 495 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢))) |
| 18 | tsmsi.4 | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐽) | |
| 19 | 6, 17, 18 | rspcdva 3580 | . 2 ⊢ (𝜑 → (𝐶 ∈ 𝑈 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈))) |
| 20 | 1, 19 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∩ cin 3904 ⊆ wss 3905 𝒫 cpw 4553 ↾ cres 5625 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 Fincfn 8879 Basecbs 17138 TopOpenctopn 17343 Σg cgsu 17362 CMndccmn 19677 TopSpctps 22835 tsums ctsu 24029 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-0g 17363 df-gsum 17364 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-cntz 19214 df-cmn 19679 df-fbas 21276 df-fg 21277 df-top 22797 df-topon 22814 df-topsp 22836 df-ntr 22923 df-nei 23001 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-tsms 24030 |
| This theorem is referenced by: tsmsxplem1 24056 |
| Copyright terms: Public domain | W3C validator |