| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsmsi | Structured version Visualization version GIF version | ||
| Description: The property of being a sum of the sequence 𝐹 in the topological commutative monoid 𝐺. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| eltsms.b | ⊢ 𝐵 = (Base‘𝐺) |
| eltsms.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
| eltsms.s | ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) |
| eltsms.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| eltsms.2 | ⊢ (𝜑 → 𝐺 ∈ TopSp) |
| eltsms.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| eltsms.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| tsmsi.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐺 tsums 𝐹)) |
| tsmsi.4 | ⊢ (𝜑 → 𝑈 ∈ 𝐽) |
| tsmsi.5 | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| tsmsi | ⊢ (𝜑 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmsi.5 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 2 | eleq2 2820 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝐶 ∈ 𝑢 ↔ 𝐶 ∈ 𝑈)) | |
| 3 | eleq2 2820 | . . . . . 6 ⊢ (𝑢 = 𝑈 → ((𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈)) | |
| 4 | 3 | imbi2d 340 | . . . . 5 ⊢ (𝑢 = 𝑈 → ((𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢) ↔ (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈))) |
| 5 | 4 | rexralbidv 3198 | . . . 4 ⊢ (𝑢 = 𝑈 → (∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢) ↔ ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈))) |
| 6 | 2, 5 | imbi12d 344 | . . 3 ⊢ (𝑢 = 𝑈 → ((𝐶 ∈ 𝑢 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)) ↔ (𝐶 ∈ 𝑈 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈)))) |
| 7 | tsmsi.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (𝐺 tsums 𝐹)) | |
| 8 | eltsms.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 9 | eltsms.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 10 | eltsms.s | . . . . . 6 ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) | |
| 11 | eltsms.1 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 12 | eltsms.2 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TopSp) | |
| 13 | eltsms.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 14 | eltsms.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 15 | 8, 9, 10, 11, 12, 13, 14 | eltsms 24046 | . . . . 5 ⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ (𝐶 ∈ 𝐵 ∧ ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢))))) |
| 16 | 7, 15 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ 𝐵 ∧ ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)))) |
| 17 | 16 | simprd 495 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢))) |
| 18 | tsmsi.4 | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐽) | |
| 19 | 6, 17, 18 | rspcdva 3578 | . 2 ⊢ (𝜑 → (𝐶 ∈ 𝑈 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈))) |
| 20 | 1, 19 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∩ cin 3901 ⊆ wss 3902 𝒫 cpw 4550 ↾ cres 5618 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 Basecbs 17117 TopOpenctopn 17322 Σg cgsu 17341 CMndccmn 19690 TopSpctps 22845 tsums ctsu 24039 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-fzo 13552 df-seq 13906 df-hash 14235 df-0g 17342 df-gsum 17343 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-cntz 19227 df-cmn 19692 df-fbas 21286 df-fg 21287 df-top 22807 df-topon 22824 df-topsp 22846 df-ntr 22933 df-nei 23011 df-fil 23759 df-fm 23851 df-flim 23852 df-flf 23853 df-tsms 24040 |
| This theorem is referenced by: tsmsxplem1 24066 |
| Copyright terms: Public domain | W3C validator |