Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimmnf | Structured version Visualization version GIF version |
Description: A function converges to minus infinity if it eventually becomes (and stays) smaller than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
xlimmnf.k | ⊢ Ⅎ𝑘𝐹 |
xlimmnf.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
xlimmnf.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
xlimmnf.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
Ref | Expression |
---|---|
xlimmnf | ⊢ (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimmnf.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | xlimmnf.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | xlimmnf.f | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
4 | 1, 2, 3 | xlimmnfv 43375 | . 2 ⊢ (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦)) |
5 | breq2 5078 | . . . . 5 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑙) ≤ 𝑦 ↔ (𝐹‘𝑙) ≤ 𝑥)) | |
6 | 5 | rexralbidv 3230 | . . . 4 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥)) |
7 | fveq2 6774 | . . . . . . 7 ⊢ (𝑖 = 𝑗 → (ℤ≥‘𝑖) = (ℤ≥‘𝑗)) | |
8 | 7 | raleqdv 3348 | . . . . . 6 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑙 ∈ (ℤ≥‘𝑗)(𝐹‘𝑙) ≤ 𝑥)) |
9 | xlimmnf.k | . . . . . . . . 9 ⊢ Ⅎ𝑘𝐹 | |
10 | nfcv 2907 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝑙 | |
11 | 9, 10 | nffv 6784 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝐹‘𝑙) |
12 | nfcv 2907 | . . . . . . . 8 ⊢ Ⅎ𝑘 ≤ | |
13 | nfcv 2907 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑥 | |
14 | 11, 12, 13 | nfbr 5121 | . . . . . . 7 ⊢ Ⅎ𝑘(𝐹‘𝑙) ≤ 𝑥 |
15 | nfv 1917 | . . . . . . 7 ⊢ Ⅎ𝑙(𝐹‘𝑘) ≤ 𝑥 | |
16 | fveq2 6774 | . . . . . . . 8 ⊢ (𝑙 = 𝑘 → (𝐹‘𝑙) = (𝐹‘𝑘)) | |
17 | 16 | breq1d 5084 | . . . . . . 7 ⊢ (𝑙 = 𝑘 → ((𝐹‘𝑙) ≤ 𝑥 ↔ (𝐹‘𝑘) ≤ 𝑥)) |
18 | 14, 15, 17 | cbvralw 3373 | . . . . . 6 ⊢ (∀𝑙 ∈ (ℤ≥‘𝑗)(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) |
19 | 8, 18 | bitrdi 287 | . . . . 5 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥)) |
20 | 19 | cbvrexvw 3384 | . . . 4 ⊢ (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) |
21 | 6, 20 | bitrdi 287 | . . 3 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥)) |
22 | 21 | cbvralvw 3383 | . 2 ⊢ (∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) |
23 | 4, 22 | bitrdi 287 | 1 ⊢ (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 Ⅎwnfc 2887 ∀wral 3064 ∃wrex 3065 class class class wbr 5074 ⟶wf 6429 ‘cfv 6433 ℝcr 10870 -∞cmnf 11007 ℝ*cxr 11008 ≤ cle 11010 ℤcz 12319 ℤ≥cuz 12582 ~~>*clsxlim 43359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-1o 8297 df-er 8498 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fi 9170 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-z 12320 df-uz 12583 df-ioo 13083 df-ioc 13084 df-ico 13085 df-icc 13086 df-topgen 17154 df-ordt 17212 df-ps 18284 df-tsr 18285 df-top 22043 df-topon 22060 df-bases 22096 df-lm 22380 df-xlim 43360 |
This theorem is referenced by: xlimmnfmpt 43384 dfxlim2v 43388 xlimpnfxnegmnf2 43399 |
Copyright terms: Public domain | W3C validator |