Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimmnf Structured version   Visualization version   GIF version

Theorem xlimmnf 43382
Description: A function converges to minus infinity if it eventually becomes (and stays) smaller than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimmnf.k 𝑘𝐹
xlimmnf.m (𝜑𝑀 ∈ ℤ)
xlimmnf.z 𝑍 = (ℤ𝑀)
xlimmnf.f (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
xlimmnf (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥))
Distinct variable groups:   𝑗,𝐹,𝑥   𝑗,𝑍,𝑥   𝑗,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑥,𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem xlimmnf
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xlimmnf.m . . 3 (𝜑𝑀 ∈ ℤ)
2 xlimmnf.z . . 3 𝑍 = (ℤ𝑀)
3 xlimmnf.f . . 3 (𝜑𝐹:𝑍⟶ℝ*)
41, 2, 3xlimmnfv 43375 . 2 (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦))
5 breq2 5078 . . . . 5 (𝑦 = 𝑥 → ((𝐹𝑙) ≤ 𝑦 ↔ (𝐹𝑙) ≤ 𝑥))
65rexralbidv 3230 . . . 4 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥))
7 fveq2 6774 . . . . . . 7 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
87raleqdv 3348 . . . . . 6 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑙 ∈ (ℤ𝑗)(𝐹𝑙) ≤ 𝑥))
9 xlimmnf.k . . . . . . . . 9 𝑘𝐹
10 nfcv 2907 . . . . . . . . 9 𝑘𝑙
119, 10nffv 6784 . . . . . . . 8 𝑘(𝐹𝑙)
12 nfcv 2907 . . . . . . . 8 𝑘
13 nfcv 2907 . . . . . . . 8 𝑘𝑥
1411, 12, 13nfbr 5121 . . . . . . 7 𝑘(𝐹𝑙) ≤ 𝑥
15 nfv 1917 . . . . . . 7 𝑙(𝐹𝑘) ≤ 𝑥
16 fveq2 6774 . . . . . . . 8 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
1716breq1d 5084 . . . . . . 7 (𝑙 = 𝑘 → ((𝐹𝑙) ≤ 𝑥 ↔ (𝐹𝑘) ≤ 𝑥))
1814, 15, 17cbvralw 3373 . . . . . 6 (∀𝑙 ∈ (ℤ𝑗)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
198, 18bitrdi 287 . . . . 5 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥))
2019cbvrexvw 3384 . . . 4 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
216, 20bitrdi 287 . . 3 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥))
2221cbvralvw 3383 . 2 (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
234, 22bitrdi 287 1 (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  wnfc 2887  wral 3064  wrex 3065   class class class wbr 5074  wf 6429  cfv 6433  cr 10870  -∞cmnf 11007  *cxr 11008  cle 11010  cz 12319  cuz 12582  ~~>*clsxlim 43359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8297  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-z 12320  df-uz 12583  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-topgen 17154  df-ordt 17212  df-ps 18284  df-tsr 18285  df-top 22043  df-topon 22060  df-bases 22096  df-lm 22380  df-xlim 43360
This theorem is referenced by:  xlimmnfmpt  43384  dfxlim2v  43388  xlimpnfxnegmnf2  43399
  Copyright terms: Public domain W3C validator