| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimmnf | Structured version Visualization version GIF version | ||
| Description: A function converges to minus infinity if it eventually becomes (and stays) smaller than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| xlimmnf.k | ⊢ Ⅎ𝑘𝐹 |
| xlimmnf.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| xlimmnf.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| xlimmnf.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| Ref | Expression |
|---|---|
| xlimmnf | ⊢ (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xlimmnf.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | xlimmnf.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | xlimmnf.f | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
| 4 | 1, 2, 3 | xlimmnfv 45872 | . 2 ⊢ (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦)) |
| 5 | breq2 5090 | . . . . 5 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑙) ≤ 𝑦 ↔ (𝐹‘𝑙) ≤ 𝑥)) | |
| 6 | 5 | rexralbidv 3198 | . . . 4 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥)) |
| 7 | fveq2 6817 | . . . . . . 7 ⊢ (𝑖 = 𝑗 → (ℤ≥‘𝑖) = (ℤ≥‘𝑗)) | |
| 8 | 7 | raleqdv 3292 | . . . . . 6 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑙 ∈ (ℤ≥‘𝑗)(𝐹‘𝑙) ≤ 𝑥)) |
| 9 | xlimmnf.k | . . . . . . . . 9 ⊢ Ⅎ𝑘𝐹 | |
| 10 | nfcv 2894 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝑙 | |
| 11 | 9, 10 | nffv 6827 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝐹‘𝑙) |
| 12 | nfcv 2894 | . . . . . . . 8 ⊢ Ⅎ𝑘 ≤ | |
| 13 | nfcv 2894 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑥 | |
| 14 | 11, 12, 13 | nfbr 5133 | . . . . . . 7 ⊢ Ⅎ𝑘(𝐹‘𝑙) ≤ 𝑥 |
| 15 | nfv 1915 | . . . . . . 7 ⊢ Ⅎ𝑙(𝐹‘𝑘) ≤ 𝑥 | |
| 16 | fveq2 6817 | . . . . . . . 8 ⊢ (𝑙 = 𝑘 → (𝐹‘𝑙) = (𝐹‘𝑘)) | |
| 17 | 16 | breq1d 5096 | . . . . . . 7 ⊢ (𝑙 = 𝑘 → ((𝐹‘𝑙) ≤ 𝑥 ↔ (𝐹‘𝑘) ≤ 𝑥)) |
| 18 | 14, 15, 17 | cbvralw 3274 | . . . . . 6 ⊢ (∀𝑙 ∈ (ℤ≥‘𝑗)(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) |
| 19 | 8, 18 | bitrdi 287 | . . . . 5 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥)) |
| 20 | 19 | cbvrexvw 3211 | . . . 4 ⊢ (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) |
| 21 | 6, 20 | bitrdi 287 | . . 3 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥)) |
| 22 | 21 | cbvralvw 3210 | . 2 ⊢ (∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) |
| 23 | 4, 22 | bitrdi 287 | 1 ⊢ (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 Ⅎwnfc 2879 ∀wral 3047 ∃wrex 3056 class class class wbr 5086 ⟶wf 6472 ‘cfv 6476 ℝcr 11000 -∞cmnf 11139 ℝ*cxr 11140 ≤ cle 11142 ℤcz 12463 ℤ≥cuz 12727 ~~>*clsxlim 45856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-1o 8380 df-2o 8381 df-er 8617 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fi 9290 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-z 12464 df-uz 12728 df-ioo 13244 df-ioc 13245 df-ico 13246 df-icc 13247 df-topgen 17342 df-ordt 17400 df-ps 18467 df-tsr 18468 df-top 22804 df-topon 22821 df-bases 22856 df-lm 23139 df-xlim 45857 |
| This theorem is referenced by: xlimmnfmpt 45881 dfxlim2v 45885 xlimpnfxnegmnf2 45896 |
| Copyright terms: Public domain | W3C validator |