![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimmnf | Structured version Visualization version GIF version |
Description: A function converges to minus infinity if it eventually becomes (and stays) smaller than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
xlimmnf.k | β’ β²ππΉ |
xlimmnf.m | β’ (π β π β β€) |
xlimmnf.z | β’ π = (β€β₯βπ) |
xlimmnf.f | β’ (π β πΉ:πβΆβ*) |
Ref | Expression |
---|---|
xlimmnf | β’ (π β (πΉ~~>*-β β βπ₯ β β βπ β π βπ β (β€β₯βπ)(πΉβπ) β€ π₯)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimmnf.m | . . 3 β’ (π β π β β€) | |
2 | xlimmnf.z | . . 3 β’ π = (β€β₯βπ) | |
3 | xlimmnf.f | . . 3 β’ (π β πΉ:πβΆβ*) | |
4 | 1, 2, 3 | xlimmnfv 44540 | . 2 β’ (π β (πΉ~~>*-β β βπ¦ β β βπ β π βπ β (β€β₯βπ)(πΉβπ) β€ π¦)) |
5 | breq2 5152 | . . . . 5 β’ (π¦ = π₯ β ((πΉβπ) β€ π¦ β (πΉβπ) β€ π₯)) | |
6 | 5 | rexralbidv 3220 | . . . 4 β’ (π¦ = π₯ β (βπ β π βπ β (β€β₯βπ)(πΉβπ) β€ π¦ β βπ β π βπ β (β€β₯βπ)(πΉβπ) β€ π₯)) |
7 | fveq2 6891 | . . . . . . 7 β’ (π = π β (β€β₯βπ) = (β€β₯βπ)) | |
8 | 7 | raleqdv 3325 | . . . . . 6 β’ (π = π β (βπ β (β€β₯βπ)(πΉβπ) β€ π₯ β βπ β (β€β₯βπ)(πΉβπ) β€ π₯)) |
9 | xlimmnf.k | . . . . . . . . 9 β’ β²ππΉ | |
10 | nfcv 2903 | . . . . . . . . 9 β’ β²ππ | |
11 | 9, 10 | nffv 6901 | . . . . . . . 8 β’ β²π(πΉβπ) |
12 | nfcv 2903 | . . . . . . . 8 β’ β²π β€ | |
13 | nfcv 2903 | . . . . . . . 8 β’ β²ππ₯ | |
14 | 11, 12, 13 | nfbr 5195 | . . . . . . 7 β’ β²π(πΉβπ) β€ π₯ |
15 | nfv 1917 | . . . . . . 7 β’ β²π(πΉβπ) β€ π₯ | |
16 | fveq2 6891 | . . . . . . . 8 β’ (π = π β (πΉβπ) = (πΉβπ)) | |
17 | 16 | breq1d 5158 | . . . . . . 7 β’ (π = π β ((πΉβπ) β€ π₯ β (πΉβπ) β€ π₯)) |
18 | 14, 15, 17 | cbvralw 3303 | . . . . . 6 β’ (βπ β (β€β₯βπ)(πΉβπ) β€ π₯ β βπ β (β€β₯βπ)(πΉβπ) β€ π₯) |
19 | 8, 18 | bitrdi 286 | . . . . 5 β’ (π = π β (βπ β (β€β₯βπ)(πΉβπ) β€ π₯ β βπ β (β€β₯βπ)(πΉβπ) β€ π₯)) |
20 | 19 | cbvrexvw 3235 | . . . 4 β’ (βπ β π βπ β (β€β₯βπ)(πΉβπ) β€ π₯ β βπ β π βπ β (β€β₯βπ)(πΉβπ) β€ π₯) |
21 | 6, 20 | bitrdi 286 | . . 3 β’ (π¦ = π₯ β (βπ β π βπ β (β€β₯βπ)(πΉβπ) β€ π¦ β βπ β π βπ β (β€β₯βπ)(πΉβπ) β€ π₯)) |
22 | 21 | cbvralvw 3234 | . 2 β’ (βπ¦ β β βπ β π βπ β (β€β₯βπ)(πΉβπ) β€ π¦ β βπ₯ β β βπ β π βπ β (β€β₯βπ)(πΉβπ) β€ π₯) |
23 | 4, 22 | bitrdi 286 | 1 β’ (π β (πΉ~~>*-β β βπ₯ β β βπ β π βπ β (β€β₯βπ)(πΉβπ) β€ π₯)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1541 β wcel 2106 β²wnfc 2883 βwral 3061 βwrex 3070 class class class wbr 5148 βΆwf 6539 βcfv 6543 βcr 11108 -βcmnf 11245 β*cxr 11246 β€ cle 11248 β€cz 12557 β€β₯cuz 12821 ~~>*clsxlim 44524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-1o 8465 df-er 8702 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fi 9405 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-z 12558 df-uz 12822 df-ioo 13327 df-ioc 13328 df-ico 13329 df-icc 13330 df-topgen 17388 df-ordt 17446 df-ps 18518 df-tsr 18519 df-top 22395 df-topon 22412 df-bases 22448 df-lm 22732 df-xlim 44525 |
This theorem is referenced by: xlimmnfmpt 44549 dfxlim2v 44553 xlimpnfxnegmnf2 44564 |
Copyright terms: Public domain | W3C validator |