| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimmnf | Structured version Visualization version GIF version | ||
| Description: A function converges to minus infinity if it eventually becomes (and stays) smaller than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| xlimmnf.k | ⊢ Ⅎ𝑘𝐹 |
| xlimmnf.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| xlimmnf.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| xlimmnf.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| Ref | Expression |
|---|---|
| xlimmnf | ⊢ (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xlimmnf.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | xlimmnf.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | xlimmnf.f | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
| 4 | 1, 2, 3 | xlimmnfv 45839 | . 2 ⊢ (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦)) |
| 5 | breq2 5114 | . . . . 5 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑙) ≤ 𝑦 ↔ (𝐹‘𝑙) ≤ 𝑥)) | |
| 6 | 5 | rexralbidv 3204 | . . . 4 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥)) |
| 7 | fveq2 6861 | . . . . . . 7 ⊢ (𝑖 = 𝑗 → (ℤ≥‘𝑖) = (ℤ≥‘𝑗)) | |
| 8 | 7 | raleqdv 3301 | . . . . . 6 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑙 ∈ (ℤ≥‘𝑗)(𝐹‘𝑙) ≤ 𝑥)) |
| 9 | xlimmnf.k | . . . . . . . . 9 ⊢ Ⅎ𝑘𝐹 | |
| 10 | nfcv 2892 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝑙 | |
| 11 | 9, 10 | nffv 6871 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝐹‘𝑙) |
| 12 | nfcv 2892 | . . . . . . . 8 ⊢ Ⅎ𝑘 ≤ | |
| 13 | nfcv 2892 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑥 | |
| 14 | 11, 12, 13 | nfbr 5157 | . . . . . . 7 ⊢ Ⅎ𝑘(𝐹‘𝑙) ≤ 𝑥 |
| 15 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑙(𝐹‘𝑘) ≤ 𝑥 | |
| 16 | fveq2 6861 | . . . . . . . 8 ⊢ (𝑙 = 𝑘 → (𝐹‘𝑙) = (𝐹‘𝑘)) | |
| 17 | 16 | breq1d 5120 | . . . . . . 7 ⊢ (𝑙 = 𝑘 → ((𝐹‘𝑙) ≤ 𝑥 ↔ (𝐹‘𝑘) ≤ 𝑥)) |
| 18 | 14, 15, 17 | cbvralw 3282 | . . . . . 6 ⊢ (∀𝑙 ∈ (ℤ≥‘𝑗)(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) |
| 19 | 8, 18 | bitrdi 287 | . . . . 5 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥)) |
| 20 | 19 | cbvrexvw 3217 | . . . 4 ⊢ (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) |
| 21 | 6, 20 | bitrdi 287 | . . 3 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥)) |
| 22 | 21 | cbvralvw 3216 | . 2 ⊢ (∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) |
| 23 | 4, 22 | bitrdi 287 | 1 ⊢ (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2877 ∀wral 3045 ∃wrex 3054 class class class wbr 5110 ⟶wf 6510 ‘cfv 6514 ℝcr 11074 -∞cmnf 11213 ℝ*cxr 11214 ≤ cle 11216 ℤcz 12536 ℤ≥cuz 12800 ~~>*clsxlim 45823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-1o 8437 df-2o 8438 df-er 8674 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fi 9369 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-z 12537 df-uz 12801 df-ioo 13317 df-ioc 13318 df-ico 13319 df-icc 13320 df-topgen 17413 df-ordt 17471 df-ps 18532 df-tsr 18533 df-top 22788 df-topon 22805 df-bases 22840 df-lm 23123 df-xlim 45824 |
| This theorem is referenced by: xlimmnfmpt 45848 dfxlim2v 45852 xlimpnfxnegmnf2 45863 |
| Copyright terms: Public domain | W3C validator |