MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cau4 Structured version   Visualization version   GIF version

Theorem cau4 15309
Description: Change the base of a Cauchy criterion. (Contributed by Mario Carneiro, 18-Mar-2014.)
Hypotheses
Ref Expression
cau3.1 𝑍 = (ℤ𝑀)
cau4.2 𝑊 = (ℤ𝑁)
Assertion
Ref Expression
cau4 (𝑁𝑍 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐹   𝑗,𝑀,𝑘,𝑥   𝑗,𝑁,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥   𝑗,𝑊,𝑘,𝑥

Proof of Theorem cau4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eluzel2 12833 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2 cau3.1 . . . . . . 7 𝑍 = (ℤ𝑀)
32rexuz3 15301 . . . . . 6 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑦 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑦))) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑦 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑦))) < 𝑥)))
41, 3syl 17 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑦 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑦))) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑦 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑦))) < 𝑥)))
5 eluzelz 12838 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
6 cau4.2 . . . . . . 7 𝑊 = (ℤ𝑁)
76rexuz3 15301 . . . . . 6 (𝑁 ∈ ℤ → (∃𝑗𝑊𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑦 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑦))) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑦 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑦))) < 𝑥)))
85, 7syl 17 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (∃𝑗𝑊𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑦 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑦))) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑦 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑦))) < 𝑥)))
94, 8bitr4d 281 . . . 4 (𝑁 ∈ (ℤ𝑀) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑦 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑦))) < 𝑥) ↔ ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑦 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑦))) < 𝑥)))
109, 2eleq2s 2849 . . 3 (𝑁𝑍 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑦 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑦))) < 𝑥) ↔ ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑦 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑦))) < 𝑥)))
1110ralbidv 3175 . 2 (𝑁𝑍 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑦 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑦))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑦 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑦))) < 𝑥)))
122cau3 15308 . 2 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑦 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑦))) < 𝑥))
136cau3 15308 . 2 (∀𝑥 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑦 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑦))) < 𝑥))
1411, 12, 133bitr4g 313 1 (𝑁𝑍 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  wral 3059  wrex 3068   class class class wbr 5149  cfv 6544  (class class class)co 7413  cc 11112   < clt 11254  cmin 11450  cz 12564  cuz 12828  +crp 12980  abscabs 15187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-sup 9441  df-pnf 11256  df-mnf 11257  df-xr 11258  df-ltxr 11259  df-le 11260  df-sub 11452  df-neg 11453  df-div 11878  df-nn 12219  df-2 12281  df-3 12282  df-n0 12479  df-z 12565  df-uz 12829  df-rp 12981  df-seq 13973  df-exp 14034  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189
This theorem is referenced by:  caurcvg2  15630  caucvgb  15632  cvgcmp  15768
  Copyright terms: Public domain W3C validator