MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atantayl3 Structured version   Visualization version   GIF version

Theorem atantayl3 25519
Description: The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypothesis
Ref Expression
atantayl3.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))
Assertion
Ref Expression
atantayl3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , 𝐹) ⇝ (arctan‘𝐴))
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem atantayl3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 atantayl3.1 . . . 4 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))
2 2nn0 11917 . . . . . . . . . . . 12 2 ∈ ℕ0
3 simpr 487 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
4 nn0mulcl 11936 . . . . . . . . . . . 12 ((2 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
52, 3, 4sylancr 589 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
65nn0cnd 11960 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℂ)
7 ax-1cn 10597 . . . . . . . . . 10 1 ∈ ℂ
8 pncan 10894 . . . . . . . . . 10 (((2 · 𝑛) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
96, 7, 8sylancl 588 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
109oveq1d 7173 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((((2 · 𝑛) + 1) − 1) / 2) = ((2 · 𝑛) / 2))
11 nn0cn 11910 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
1211adantl 484 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
13 2cnd 11718 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → 2 ∈ ℂ)
14 2ne0 11744 . . . . . . . . . 10 2 ≠ 0
1514a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → 2 ≠ 0)
1612, 13, 15divcan3d 11423 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((2 · 𝑛) / 2) = 𝑛)
1710, 16eqtr2d 2859 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → 𝑛 = ((((2 · 𝑛) + 1) − 1) / 2))
1817oveq2d 7174 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (-1↑𝑛) = (-1↑((((2 · 𝑛) + 1) − 1) / 2)))
1918oveq1d 7173 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑛) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))) = ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))
2019mpteq2dva 5163 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1)))))
211, 20syl5eq 2870 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1)))))
2221seqeq3d 13380 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , 𝐹) = seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))))
23 eqid 2823 . . . 4 (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · ((𝐴𝑘) / 𝑘)))) = (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · ((𝐴𝑘) / 𝑘))))
2423atantayl2 25518 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · ((𝐴𝑘) / 𝑘))))) ⇝ (arctan‘𝐴))
25 neg1cn 11754 . . . . . . 7 -1 ∈ ℂ
26 expcl 13450 . . . . . . 7 ((-1 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (-1↑𝑛) ∈ ℂ)
2725, 3, 26sylancr 589 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (-1↑𝑛) ∈ ℂ)
28 simpll 765 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ ℂ)
29 peano2nn0 11940 . . . . . . . . 9 ((2 · 𝑛) ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ0)
305, 29syl 17 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((2 · 𝑛) + 1) ∈ ℕ0)
3128, 30expcld 13513 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (𝐴↑((2 · 𝑛) + 1)) ∈ ℂ)
32 nn0p1nn 11939 . . . . . . . . 9 ((2 · 𝑛) ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ)
335, 32syl 17 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((2 · 𝑛) + 1) ∈ ℕ)
3433nncnd 11656 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((2 · 𝑛) + 1) ∈ ℂ)
3533nnne0d 11690 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((2 · 𝑛) + 1) ≠ 0)
3631, 34, 35divcld 11418 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1)) ∈ ℂ)
3727, 36mulcld 10663 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑛) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))) ∈ ℂ)
3819, 37eqeltrrd 2916 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))) ∈ ℂ)
39 oveq1 7165 . . . . . . 7 (𝑘 = ((2 · 𝑛) + 1) → (𝑘 − 1) = (((2 · 𝑛) + 1) − 1))
4039oveq1d 7173 . . . . . 6 (𝑘 = ((2 · 𝑛) + 1) → ((𝑘 − 1) / 2) = ((((2 · 𝑛) + 1) − 1) / 2))
4140oveq2d 7174 . . . . 5 (𝑘 = ((2 · 𝑛) + 1) → (-1↑((𝑘 − 1) / 2)) = (-1↑((((2 · 𝑛) + 1) − 1) / 2)))
42 oveq2 7166 . . . . . 6 (𝑘 = ((2 · 𝑛) + 1) → (𝐴𝑘) = (𝐴↑((2 · 𝑛) + 1)))
43 id 22 . . . . . 6 (𝑘 = ((2 · 𝑛) + 1) → 𝑘 = ((2 · 𝑛) + 1))
4442, 43oveq12d 7176 . . . . 5 (𝑘 = ((2 · 𝑛) + 1) → ((𝐴𝑘) / 𝑘) = ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1)))
4541, 44oveq12d 7176 . . . 4 (𝑘 = ((2 · 𝑛) + 1) → ((-1↑((𝑘 − 1) / 2)) · ((𝐴𝑘) / 𝑘)) = ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))
4638, 45iserodd 16174 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))) ⇝ (arctan‘𝐴) ↔ seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · ((𝐴𝑘) / 𝑘))))) ⇝ (arctan‘𝐴)))
4724, 46mpbird 259 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))) ⇝ (arctan‘𝐴))
4822, 47eqbrtrd 5090 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , 𝐹) ⇝ (arctan‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  ifcif 4469   class class class wbr 5068  cmpt 5148  cfv 6357  (class class class)co 7158  cc 10537  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cmin 10872  -cneg 10873   / cdiv 11299  cn 11640  2c2 11695  0cn0 11900  seqcseq 13372  cexp 13432  abscabs 14595  cli 14843  cdvds 15609  arctancatan 25444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-xnn0 11971  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-tan 15427  df-pi 15428  df-dvds 15610  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467  df-ulm 24967  df-log 25142  df-atan 25447
This theorem is referenced by:  log2cnv  25524
  Copyright terms: Public domain W3C validator