MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atantayl3 Structured version   Visualization version   GIF version

Theorem atantayl3 25846
Description: The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypothesis
Ref Expression
atantayl3.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))
Assertion
Ref Expression
atantayl3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , 𝐹) ⇝ (arctan‘𝐴))
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem atantayl3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 atantayl3.1 . . . 4 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))
2 2nn0 12131 . . . . . . . . . . . 12 2 ∈ ℕ0
3 simpr 488 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
4 nn0mulcl 12150 . . . . . . . . . . . 12 ((2 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
52, 3, 4sylancr 590 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
65nn0cnd 12176 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℂ)
7 ax-1cn 10811 . . . . . . . . . 10 1 ∈ ℂ
8 pncan 11108 . . . . . . . . . 10 (((2 · 𝑛) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
96, 7, 8sylancl 589 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
109oveq1d 7246 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((((2 · 𝑛) + 1) − 1) / 2) = ((2 · 𝑛) / 2))
11 nn0cn 12124 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
1211adantl 485 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
13 2cnd 11932 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → 2 ∈ ℂ)
14 2ne0 11958 . . . . . . . . . 10 2 ≠ 0
1514a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → 2 ≠ 0)
1612, 13, 15divcan3d 11637 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((2 · 𝑛) / 2) = 𝑛)
1710, 16eqtr2d 2779 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → 𝑛 = ((((2 · 𝑛) + 1) − 1) / 2))
1817oveq2d 7247 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (-1↑𝑛) = (-1↑((((2 · 𝑛) + 1) − 1) / 2)))
1918oveq1d 7246 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑛) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))) = ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))
2019mpteq2dva 5164 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1)))))
211, 20syl5eq 2791 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1)))))
2221seqeq3d 13606 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , 𝐹) = seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))))
23 eqid 2738 . . . 4 (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · ((𝐴𝑘) / 𝑘)))) = (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · ((𝐴𝑘) / 𝑘))))
2423atantayl2 25845 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · ((𝐴𝑘) / 𝑘))))) ⇝ (arctan‘𝐴))
25 neg1cn 11968 . . . . . . 7 -1 ∈ ℂ
26 expcl 13677 . . . . . . 7 ((-1 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (-1↑𝑛) ∈ ℂ)
2725, 3, 26sylancr 590 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (-1↑𝑛) ∈ ℂ)
28 simpll 767 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ ℂ)
29 peano2nn0 12154 . . . . . . . . 9 ((2 · 𝑛) ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ0)
305, 29syl 17 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((2 · 𝑛) + 1) ∈ ℕ0)
3128, 30expcld 13740 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (𝐴↑((2 · 𝑛) + 1)) ∈ ℂ)
32 nn0p1nn 12153 . . . . . . . . 9 ((2 · 𝑛) ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ)
335, 32syl 17 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((2 · 𝑛) + 1) ∈ ℕ)
3433nncnd 11870 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((2 · 𝑛) + 1) ∈ ℂ)
3533nnne0d 11904 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((2 · 𝑛) + 1) ≠ 0)
3631, 34, 35divcld 11632 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1)) ∈ ℂ)
3727, 36mulcld 10877 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑛) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))) ∈ ℂ)
3819, 37eqeltrrd 2840 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))) ∈ ℂ)
39 oveq1 7238 . . . . . . 7 (𝑘 = ((2 · 𝑛) + 1) → (𝑘 − 1) = (((2 · 𝑛) + 1) − 1))
4039oveq1d 7246 . . . . . 6 (𝑘 = ((2 · 𝑛) + 1) → ((𝑘 − 1) / 2) = ((((2 · 𝑛) + 1) − 1) / 2))
4140oveq2d 7247 . . . . 5 (𝑘 = ((2 · 𝑛) + 1) → (-1↑((𝑘 − 1) / 2)) = (-1↑((((2 · 𝑛) + 1) − 1) / 2)))
42 oveq2 7239 . . . . . 6 (𝑘 = ((2 · 𝑛) + 1) → (𝐴𝑘) = (𝐴↑((2 · 𝑛) + 1)))
43 id 22 . . . . . 6 (𝑘 = ((2 · 𝑛) + 1) → 𝑘 = ((2 · 𝑛) + 1))
4442, 43oveq12d 7249 . . . . 5 (𝑘 = ((2 · 𝑛) + 1) → ((𝐴𝑘) / 𝑘) = ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1)))
4541, 44oveq12d 7249 . . . 4 (𝑘 = ((2 · 𝑛) + 1) → ((-1↑((𝑘 − 1) / 2)) · ((𝐴𝑘) / 𝑘)) = ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))
4638, 45iserodd 16412 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))) ⇝ (arctan‘𝐴) ↔ seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · ((𝐴𝑘) / 𝑘))))) ⇝ (arctan‘𝐴)))
4724, 46mpbird 260 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))) ⇝ (arctan‘𝐴))
4822, 47eqbrtrd 5089 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , 𝐹) ⇝ (arctan‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2111  wne 2941  ifcif 4453   class class class wbr 5067  cmpt 5149  cfv 6397  (class class class)co 7231  cc 10751  0cc0 10753  1c1 10754   + caddc 10756   · cmul 10758   < clt 10891  cmin 11086  -cneg 11087   / cdiv 11513  cn 11854  2c2 11909  0cn0 12114  seqcseq 13598  cexp 13659  abscabs 14821  cli 15069  cdvds 15839  arctancatan 25771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336  ax-un 7541  ax-inf2 9280  ax-cnex 10809  ax-resscn 10810  ax-1cn 10811  ax-icn 10812  ax-addcl 10813  ax-addrcl 10814  ax-mulcl 10815  ax-mulrcl 10816  ax-mulcom 10817  ax-addass 10818  ax-mulass 10819  ax-distr 10820  ax-i2m1 10821  ax-1ne0 10822  ax-1rid 10823  ax-rnegex 10824  ax-rrecex 10825  ax-cnre 10826  ax-pre-lttri 10827  ax-pre-lttrn 10828  ax-pre-ltadd 10829  ax-pre-mulgt0 10830  ax-pre-sup 10831  ax-addf 10832  ax-mulf 10833
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3422  df-sbc 3709  df-csb 3826  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-pss 3899  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-tp 4560  df-op 4562  df-uni 4834  df-int 4874  df-iun 4920  df-iin 4921  df-br 5068  df-opab 5130  df-mpt 5150  df-tr 5176  df-id 5469  df-eprel 5474  df-po 5482  df-so 5483  df-fr 5523  df-se 5524  df-we 5525  df-xp 5571  df-rel 5572  df-cnv 5573  df-co 5574  df-dm 5575  df-rn 5576  df-res 5577  df-ima 5578  df-pred 6175  df-ord 6233  df-on 6234  df-lim 6235  df-suc 6236  df-iota 6355  df-fun 6399  df-fn 6400  df-f 6401  df-f1 6402  df-fo 6403  df-f1o 6404  df-fv 6405  df-isom 6406  df-riota 7188  df-ov 7234  df-oprab 7235  df-mpo 7236  df-of 7487  df-om 7663  df-1st 7779  df-2nd 7780  df-supp 7924  df-wrecs 8067  df-recs 8128  df-rdg 8166  df-1o 8222  df-2o 8223  df-oadd 8226  df-er 8411  df-map 8530  df-pm 8531  df-ixp 8599  df-en 8647  df-dom 8648  df-sdom 8649  df-fin 8650  df-fsupp 9010  df-fi 9051  df-sup 9082  df-inf 9083  df-oi 9150  df-card 9579  df-pnf 10893  df-mnf 10894  df-xr 10895  df-ltxr 10896  df-le 10897  df-sub 11088  df-neg 11089  df-div 11514  df-nn 11855  df-2 11917  df-3 11918  df-4 11919  df-5 11920  df-6 11921  df-7 11922  df-8 11923  df-9 11924  df-n0 12115  df-xnn0 12187  df-z 12201  df-dec 12318  df-uz 12463  df-q 12569  df-rp 12611  df-xneg 12728  df-xadd 12729  df-xmul 12730  df-ioo 12963  df-ioc 12964  df-ico 12965  df-icc 12966  df-fz 13120  df-fzo 13263  df-fl 13391  df-mod 13467  df-seq 13599  df-exp 13660  df-fac 13864  df-bc 13893  df-hash 13921  df-shft 14654  df-cj 14686  df-re 14687  df-im 14688  df-sqrt 14822  df-abs 14823  df-limsup 15056  df-clim 15073  df-rlim 15074  df-sum 15274  df-ef 15653  df-sin 15655  df-cos 15656  df-tan 15657  df-pi 15658  df-dvds 15840  df-struct 16724  df-sets 16741  df-slot 16759  df-ndx 16769  df-base 16785  df-ress 16809  df-plusg 16839  df-mulr 16840  df-starv 16841  df-sca 16842  df-vsca 16843  df-ip 16844  df-tset 16845  df-ple 16846  df-ds 16848  df-unif 16849  df-hom 16850  df-cco 16851  df-rest 16951  df-topn 16952  df-0g 16970  df-gsum 16971  df-topgen 16972  df-pt 16973  df-prds 16976  df-xrs 17031  df-qtop 17036  df-imas 17037  df-xps 17039  df-mre 17113  df-mrc 17114  df-acs 17116  df-mgm 18138  df-sgrp 18187  df-mnd 18198  df-submnd 18243  df-mulg 18513  df-cntz 18735  df-cmn 19196  df-psmet 20379  df-xmet 20380  df-met 20381  df-bl 20382  df-mopn 20383  df-fbas 20384  df-fg 20385  df-cnfld 20388  df-top 21815  df-topon 21832  df-topsp 21854  df-bases 21867  df-cld 21940  df-ntr 21941  df-cls 21942  df-nei 22019  df-lp 22057  df-perf 22058  df-cn 22148  df-cnp 22149  df-haus 22236  df-cmp 22308  df-tx 22483  df-hmeo 22676  df-fil 22767  df-fm 22859  df-flim 22860  df-flf 22861  df-xms 23242  df-ms 23243  df-tms 23244  df-cncf 23799  df-limc 24787  df-dv 24788  df-ulm 25293  df-log 25469  df-atan 25774
This theorem is referenced by:  log2cnv  25851
  Copyright terms: Public domain W3C validator