MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem1 Structured version   Visualization version   GIF version

Theorem abelthlem1 26317
Description: Lemma for abelth 26327. (Contributed by Mario Carneiro, 1-Apr-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
Assertion
Ref Expression
abelthlem1 (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
Distinct variable groups:   𝑧,𝑛,𝑟,𝐴   𝜑,𝑛,𝑟
Allowed substitution hint:   𝜑(𝑧)

Proof of Theorem abelthlem1
StepHypRef Expression
1 abs1 15239 . 2 (abs‘1) = 1
2 eqid 2729 . . 3 (𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛)))) = (𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))
3 abelth.1 . . 3 (𝜑𝐴:ℕ0⟶ℂ)
4 eqid 2729 . . 3 sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )
5 1cnd 11145 . . 3 (𝜑 → 1 ∈ ℂ)
63feqmptd 6911 . . . . . . 7 (𝜑𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)))
73ffvelcdmda 7038 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
87mulridd 11167 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · 1) = (𝐴𝑛))
98mpteq2dva 5195 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)))
106, 9eqtr4d 2767 . . . . . 6 (𝜑𝐴 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)))
11 ax-1cn 11102 . . . . . . 7 1 ∈ ℂ
12 oveq1 7376 . . . . . . . . . . 11 (𝑧 = 1 → (𝑧𝑛) = (1↑𝑛))
13 nn0z 12530 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
14 1exp 14032 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
1513, 14syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
1612, 15sylan9eq 2784 . . . . . . . . . 10 ((𝑧 = 1 ∧ 𝑛 ∈ ℕ0) → (𝑧𝑛) = 1)
1716oveq2d 7385 . . . . . . . . 9 ((𝑧 = 1 ∧ 𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑧𝑛)) = ((𝐴𝑛) · 1))
1817mpteq2dva 5195 . . . . . . . 8 (𝑧 = 1 → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)))
19 nn0ex 12424 . . . . . . . . 9 0 ∈ V
2019mptex 7179 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)) ∈ V
2118, 2, 20fvmpt 6950 . . . . . . 7 (1 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘1) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)))
2211, 21ax-mp 5 . . . . . 6 ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘1) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1))
2310, 22eqtr4di 2782 . . . . 5 (𝜑𝐴 = ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘1))
2423seqeq3d 13950 . . . 4 (𝜑 → seq0( + , 𝐴) = seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘1)))
25 abelth.2 . . . 4 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
2624, 25eqeltrrd 2829 . . 3 (𝜑 → seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘1)) ∈ dom ⇝ )
272, 3, 4, 5, 26radcnvle 26305 . 2 (𝜑 → (abs‘1) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
281, 27eqbrtrrid 5138 1 (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3402   class class class wbr 5102  cmpt 5183  dom cdm 5631  wf 6495  cfv 6499  (class class class)co 7369  supcsup 9367  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  *cxr 11183   < clt 11184  cle 11185  0cn0 12418  cz 12505  seqcseq 13942  cexp 14002  abscabs 15176  cli 15426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629
This theorem is referenced by:  abelthlem3  26319  abelth  26327
  Copyright terms: Public domain W3C validator