MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem1 Structured version   Visualization version   GIF version

Theorem abelthlem1 26348
Description: Lemma for abelth 26358. (Contributed by Mario Carneiro, 1-Apr-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
Assertion
Ref Expression
abelthlem1 (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
Distinct variable groups:   𝑧,𝑛,𝑟,𝐴   𝜑,𝑛,𝑟
Allowed substitution hint:   𝜑(𝑧)

Proof of Theorem abelthlem1
StepHypRef Expression
1 abs1 15270 . 2 (abs‘1) = 1
2 eqid 2730 . . 3 (𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛)))) = (𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))
3 abelth.1 . . 3 (𝜑𝐴:ℕ0⟶ℂ)
4 eqid 2730 . . 3 sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )
5 1cnd 11176 . . 3 (𝜑 → 1 ∈ ℂ)
63feqmptd 6932 . . . . . . 7 (𝜑𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)))
73ffvelcdmda 7059 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
87mulridd 11198 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · 1) = (𝐴𝑛))
98mpteq2dva 5203 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)))
106, 9eqtr4d 2768 . . . . . 6 (𝜑𝐴 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)))
11 ax-1cn 11133 . . . . . . 7 1 ∈ ℂ
12 oveq1 7397 . . . . . . . . . . 11 (𝑧 = 1 → (𝑧𝑛) = (1↑𝑛))
13 nn0z 12561 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
14 1exp 14063 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
1513, 14syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
1612, 15sylan9eq 2785 . . . . . . . . . 10 ((𝑧 = 1 ∧ 𝑛 ∈ ℕ0) → (𝑧𝑛) = 1)
1716oveq2d 7406 . . . . . . . . 9 ((𝑧 = 1 ∧ 𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑧𝑛)) = ((𝐴𝑛) · 1))
1817mpteq2dva 5203 . . . . . . . 8 (𝑧 = 1 → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)))
19 nn0ex 12455 . . . . . . . . 9 0 ∈ V
2019mptex 7200 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)) ∈ V
2118, 2, 20fvmpt 6971 . . . . . . 7 (1 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘1) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)))
2211, 21ax-mp 5 . . . . . 6 ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘1) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1))
2310, 22eqtr4di 2783 . . . . 5 (𝜑𝐴 = ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘1))
2423seqeq3d 13981 . . . 4 (𝜑 → seq0( + , 𝐴) = seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘1)))
25 abelth.2 . . . 4 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
2624, 25eqeltrrd 2830 . . 3 (𝜑 → seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘1)) ∈ dom ⇝ )
272, 3, 4, 5, 26radcnvle 26336 . 2 (𝜑 → (abs‘1) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
281, 27eqbrtrrid 5146 1 (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408   class class class wbr 5110  cmpt 5191  dom cdm 5641  wf 6510  cfv 6514  (class class class)co 7390  supcsup 9398  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  *cxr 11214   < clt 11215  cle 11216  0cn0 12449  cz 12536  seqcseq 13973  cexp 14033  abscabs 15207  cli 15457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660
This theorem is referenced by:  abelthlem3  26350  abelth  26358
  Copyright terms: Public domain W3C validator