MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem1 Structured version   Visualization version   GIF version

Theorem abelthlem1 24398
Description: Lemma for abelth 24408. (Contributed by Mario Carneiro, 1-Apr-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
Assertion
Ref Expression
abelthlem1 (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
Distinct variable groups:   𝑧,𝑛,𝑟,𝐴   𝜑,𝑛,𝑟
Allowed substitution hint:   𝜑(𝑧)

Proof of Theorem abelthlem1
StepHypRef Expression
1 abs1 14238 . 2 (abs‘1) = 1
2 eqid 2771 . . 3 (𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛)))) = (𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))
3 abelth.1 . . 3 (𝜑𝐴:ℕ0⟶ℂ)
4 eqid 2771 . . 3 sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )
5 1cnd 10256 . . 3 (𝜑 → 1 ∈ ℂ)
63feqmptd 6389 . . . . . . 7 (𝜑𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)))
73ffvelrnda 6500 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
87mulid1d 10257 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · 1) = (𝐴𝑛))
98mpteq2dva 4878 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)))
106, 9eqtr4d 2808 . . . . . 6 (𝜑𝐴 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)))
11 ax-1cn 10194 . . . . . . 7 1 ∈ ℂ
12 oveq1 6798 . . . . . . . . . . 11 (𝑧 = 1 → (𝑧𝑛) = (1↑𝑛))
13 nn0z 11600 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
14 1exp 13089 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
1513, 14syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
1612, 15sylan9eq 2825 . . . . . . . . . 10 ((𝑧 = 1 ∧ 𝑛 ∈ ℕ0) → (𝑧𝑛) = 1)
1716oveq2d 6807 . . . . . . . . 9 ((𝑧 = 1 ∧ 𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑧𝑛)) = ((𝐴𝑛) · 1))
1817mpteq2dva 4878 . . . . . . . 8 (𝑧 = 1 → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)))
19 nn0ex 11498 . . . . . . . . 9 0 ∈ V
2019mptex 6628 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)) ∈ V
2118, 2, 20fvmpt 6422 . . . . . . 7 (1 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘1) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)))
2211, 21ax-mp 5 . . . . . 6 ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘1) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1))
2310, 22syl6eqr 2823 . . . . 5 (𝜑𝐴 = ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘1))
2423seqeq3d 13009 . . . 4 (𝜑 → seq0( + , 𝐴) = seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘1)))
25 abelth.2 . . . 4 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
2624, 25eqeltrrd 2851 . . 3 (𝜑 → seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘1)) ∈ dom ⇝ )
272, 3, 4, 5, 26radcnvle 24387 . 2 (𝜑 → (abs‘1) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
281, 27syl5eqbrr 4822 1 (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  {crab 3065   class class class wbr 4786  cmpt 4863  dom cdm 5249  wf 6025  cfv 6029  (class class class)co 6791  supcsup 8500  cc 10134  cr 10135  0cc0 10136  1c1 10137   + caddc 10139   · cmul 10141  *cxr 10273   < clt 10274  cle 10275  0cn0 11492  cz 11577  seqcseq 13001  cexp 13060  abscabs 14175  cli 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214  ax-addf 10215  ax-mulf 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-oadd 7715  df-er 7894  df-pm 8010  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-sup 8502  df-inf 8503  df-oi 8569  df-card 8963  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-n0 11493  df-z 11578  df-uz 11887  df-rp 12029  df-ico 12379  df-icc 12380  df-fz 12527  df-fzo 12667  df-fl 12794  df-seq 13002  df-exp 13061  df-hash 13315  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-limsup 14403  df-clim 14420  df-rlim 14421  df-sum 14618
This theorem is referenced by:  abelthlem3  24400  abelth  24408
  Copyright terms: Public domain W3C validator