| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abelthlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for abelth 26373. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| Ref | Expression |
|---|---|
| abelth.1 | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| abelth.2 | ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) |
| Ref | Expression |
|---|---|
| abelthlem1 | ⊢ (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abs1 15199 | . 2 ⊢ (abs‘1) = 1 | |
| 2 | eqid 2731 | . . 3 ⊢ (𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛)))) = (𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛)))) | |
| 3 | abelth.1 | . . 3 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
| 4 | eqid 2731 | . . 3 ⊢ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
| 5 | 1cnd 11102 | . . 3 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 6 | 3 | feqmptd 6885 | . . . . . . 7 ⊢ (𝜑 → 𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐴‘𝑛))) |
| 7 | 3 | ffvelcdmda 7012 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐴‘𝑛) ∈ ℂ) |
| 8 | 7 | mulridd 11124 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝐴‘𝑛) · 1) = (𝐴‘𝑛)) |
| 9 | 8 | mpteq2dva 5179 | . . . . . . 7 ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · 1)) = (𝑛 ∈ ℕ0 ↦ (𝐴‘𝑛))) |
| 10 | 6, 9 | eqtr4d 2769 | . . . . . 6 ⊢ (𝜑 → 𝐴 = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · 1))) |
| 11 | ax-1cn 11059 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 12 | oveq1 7348 | . . . . . . . . . . 11 ⊢ (𝑧 = 1 → (𝑧↑𝑛) = (1↑𝑛)) | |
| 13 | nn0z 12488 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ) | |
| 14 | 1exp 13993 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → (1↑𝑛) = 1) | |
| 15 | 13, 14 | syl 17 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ0 → (1↑𝑛) = 1) |
| 16 | 12, 15 | sylan9eq 2786 | . . . . . . . . . 10 ⊢ ((𝑧 = 1 ∧ 𝑛 ∈ ℕ0) → (𝑧↑𝑛) = 1) |
| 17 | 16 | oveq2d 7357 | . . . . . . . . 9 ⊢ ((𝑧 = 1 ∧ 𝑛 ∈ ℕ0) → ((𝐴‘𝑛) · (𝑧↑𝑛)) = ((𝐴‘𝑛) · 1)) |
| 18 | 17 | mpteq2dva 5179 | . . . . . . . 8 ⊢ (𝑧 = 1 → (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · 1))) |
| 19 | nn0ex 12382 | . . . . . . . . 9 ⊢ ℕ0 ∈ V | |
| 20 | 19 | mptex 7152 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · 1)) ∈ V |
| 21 | 18, 2, 20 | fvmpt 6924 | . . . . . . 7 ⊢ (1 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘1) = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · 1))) |
| 22 | 11, 21 | ax-mp 5 | . . . . . 6 ⊢ ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘1) = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · 1)) |
| 23 | 10, 22 | eqtr4di 2784 | . . . . 5 ⊢ (𝜑 → 𝐴 = ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘1)) |
| 24 | 23 | seqeq3d 13911 | . . . 4 ⊢ (𝜑 → seq0( + , 𝐴) = seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘1))) |
| 25 | abelth.2 | . . . 4 ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) | |
| 26 | 24, 25 | eqeltrrd 2832 | . . 3 ⊢ (𝜑 → seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘1)) ∈ dom ⇝ ) |
| 27 | 2, 3, 4, 5, 26 | radcnvle 26351 | . 2 ⊢ (𝜑 → (abs‘1) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) |
| 28 | 1, 27 | eqbrtrrid 5122 | 1 ⊢ (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 class class class wbr 5086 ↦ cmpt 5167 dom cdm 5611 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 supcsup 9319 ℂcc 10999 ℝcr 11000 0cc0 11001 1c1 11002 + caddc 11004 · cmul 11006 ℝ*cxr 11140 < clt 11141 ≤ cle 11142 ℕ0cn0 12376 ℤcz 12463 seqcseq 13903 ↑cexp 13963 abscabs 15136 ⇝ cli 15386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-ico 13246 df-icc 13247 df-fz 13403 df-fzo 13550 df-fl 13691 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-limsup 15373 df-clim 15390 df-rlim 15391 df-sum 15589 |
| This theorem is referenced by: abelthlem3 26365 abelth 26373 |
| Copyright terms: Public domain | W3C validator |