![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abelthlem1 | Structured version Visualization version GIF version |
Description: Lemma for abelth 26423. (Contributed by Mario Carneiro, 1-Apr-2015.) |
Ref | Expression |
---|---|
abelth.1 | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
abelth.2 | ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) |
Ref | Expression |
---|---|
abelthlem1 | ⊢ (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abs1 15280 | . 2 ⊢ (abs‘1) = 1 | |
2 | eqid 2725 | . . 3 ⊢ (𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛)))) = (𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛)))) | |
3 | abelth.1 | . . 3 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
4 | eqid 2725 | . . 3 ⊢ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
5 | 1cnd 11241 | . . 3 ⊢ (𝜑 → 1 ∈ ℂ) | |
6 | 3 | feqmptd 6966 | . . . . . . 7 ⊢ (𝜑 → 𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐴‘𝑛))) |
7 | 3 | ffvelcdmda 7093 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐴‘𝑛) ∈ ℂ) |
8 | 7 | mulridd 11263 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝐴‘𝑛) · 1) = (𝐴‘𝑛)) |
9 | 8 | mpteq2dva 5249 | . . . . . . 7 ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · 1)) = (𝑛 ∈ ℕ0 ↦ (𝐴‘𝑛))) |
10 | 6, 9 | eqtr4d 2768 | . . . . . 6 ⊢ (𝜑 → 𝐴 = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · 1))) |
11 | ax-1cn 11198 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
12 | oveq1 7426 | . . . . . . . . . . 11 ⊢ (𝑧 = 1 → (𝑧↑𝑛) = (1↑𝑛)) | |
13 | nn0z 12616 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ) | |
14 | 1exp 14092 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → (1↑𝑛) = 1) | |
15 | 13, 14 | syl 17 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ0 → (1↑𝑛) = 1) |
16 | 12, 15 | sylan9eq 2785 | . . . . . . . . . 10 ⊢ ((𝑧 = 1 ∧ 𝑛 ∈ ℕ0) → (𝑧↑𝑛) = 1) |
17 | 16 | oveq2d 7435 | . . . . . . . . 9 ⊢ ((𝑧 = 1 ∧ 𝑛 ∈ ℕ0) → ((𝐴‘𝑛) · (𝑧↑𝑛)) = ((𝐴‘𝑛) · 1)) |
18 | 17 | mpteq2dva 5249 | . . . . . . . 8 ⊢ (𝑧 = 1 → (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · 1))) |
19 | nn0ex 12511 | . . . . . . . . 9 ⊢ ℕ0 ∈ V | |
20 | 19 | mptex 7235 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · 1)) ∈ V |
21 | 18, 2, 20 | fvmpt 7004 | . . . . . . 7 ⊢ (1 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘1) = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · 1))) |
22 | 11, 21 | ax-mp 5 | . . . . . 6 ⊢ ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘1) = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · 1)) |
23 | 10, 22 | eqtr4di 2783 | . . . . 5 ⊢ (𝜑 → 𝐴 = ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘1)) |
24 | 23 | seqeq3d 14010 | . . . 4 ⊢ (𝜑 → seq0( + , 𝐴) = seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘1))) |
25 | abelth.2 | . . . 4 ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) | |
26 | 24, 25 | eqeltrrd 2826 | . . 3 ⊢ (𝜑 → seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘1)) ∈ dom ⇝ ) |
27 | 2, 3, 4, 5, 26 | radcnvle 26401 | . 2 ⊢ (𝜑 → (abs‘1) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) |
28 | 1, 27 | eqbrtrrid 5185 | 1 ⊢ (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3418 class class class wbr 5149 ↦ cmpt 5232 dom cdm 5678 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 supcsup 9465 ℂcc 11138 ℝcr 11139 0cc0 11140 1c1 11141 + caddc 11143 · cmul 11145 ℝ*cxr 11279 < clt 11280 ≤ cle 11281 ℕ0cn0 12505 ℤcz 12591 seqcseq 14002 ↑cexp 14062 abscabs 15217 ⇝ cli 15464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-inf 9468 df-oi 9535 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-z 12592 df-uz 12856 df-rp 13010 df-ico 13365 df-icc 13366 df-fz 13520 df-fzo 13663 df-fl 13793 df-seq 14003 df-exp 14063 df-hash 14326 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-limsup 15451 df-clim 15468 df-rlim 15469 df-sum 15669 |
This theorem is referenced by: abelthlem3 26415 abelth 26423 |
Copyright terms: Public domain | W3C validator |