MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem1 Structured version   Visualization version   GIF version

Theorem abelthlem1 25295
Description: Lemma for abelth 25305. (Contributed by Mario Carneiro, 1-Apr-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
Assertion
Ref Expression
abelthlem1 (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
Distinct variable groups:   𝑧,𝑛,𝑟,𝐴   𝜑,𝑛,𝑟
Allowed substitution hint:   𝜑(𝑧)

Proof of Theorem abelthlem1
StepHypRef Expression
1 abs1 14844 . 2 (abs‘1) = 1
2 eqid 2734 . . 3 (𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛)))) = (𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))
3 abelth.1 . . 3 (𝜑𝐴:ℕ0⟶ℂ)
4 eqid 2734 . . 3 sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )
5 1cnd 10811 . . 3 (𝜑 → 1 ∈ ℂ)
63feqmptd 6769 . . . . . . 7 (𝜑𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)))
73ffvelrnda 6893 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
87mulid1d 10833 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · 1) = (𝐴𝑛))
98mpteq2dva 5139 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)))
106, 9eqtr4d 2777 . . . . . 6 (𝜑𝐴 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)))
11 ax-1cn 10770 . . . . . . 7 1 ∈ ℂ
12 oveq1 7209 . . . . . . . . . . 11 (𝑧 = 1 → (𝑧𝑛) = (1↑𝑛))
13 nn0z 12183 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
14 1exp 13647 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
1513, 14syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
1612, 15sylan9eq 2794 . . . . . . . . . 10 ((𝑧 = 1 ∧ 𝑛 ∈ ℕ0) → (𝑧𝑛) = 1)
1716oveq2d 7218 . . . . . . . . 9 ((𝑧 = 1 ∧ 𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑧𝑛)) = ((𝐴𝑛) · 1))
1817mpteq2dva 5139 . . . . . . . 8 (𝑧 = 1 → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)))
19 nn0ex 12079 . . . . . . . . 9 0 ∈ V
2019mptex 7028 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)) ∈ V
2118, 2, 20fvmpt 6807 . . . . . . 7 (1 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘1) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1)))
2211, 21ax-mp 5 . . . . . 6 ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘1) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · 1))
2310, 22eqtr4di 2792 . . . . 5 (𝜑𝐴 = ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘1))
2423seqeq3d 13565 . . . 4 (𝜑 → seq0( + , 𝐴) = seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘1)))
25 abelth.2 . . . 4 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
2624, 25eqeltrrd 2835 . . 3 (𝜑 → seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘1)) ∈ dom ⇝ )
272, 3, 4, 5, 26radcnvle 25284 . 2 (𝜑 → (abs‘1) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
281, 27eqbrtrrid 5079 1 (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  {crab 3058   class class class wbr 5043  cmpt 5124  dom cdm 5540  wf 6365  cfv 6369  (class class class)co 7202  supcsup 9045  cc 10710  cr 10711  0cc0 10712  1c1 10713   + caddc 10715   · cmul 10717  *cxr 10849   < clt 10850  cle 10851  0cn0 12073  cz 12159  seqcseq 13557  cexp 13618  abscabs 14780  cli 15028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-pm 8500  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-inf 9048  df-oi 9115  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-z 12160  df-uz 12422  df-rp 12570  df-ico 12924  df-icc 12925  df-fz 13079  df-fzo 13222  df-fl 13350  df-seq 13558  df-exp 13619  df-hash 13880  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-limsup 15015  df-clim 15032  df-rlim 15033  df-sum 15233
This theorem is referenced by:  abelthlem3  25297  abelth  25305
  Copyright terms: Public domain W3C validator