| Step | Hyp | Ref
| Expression |
| 1 | | rpvmasum.z |
. . 3
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) |
| 2 | | rpvmasum.l |
. . 3
⊢ 𝐿 = (ℤRHom‘𝑍) |
| 3 | | rpvmasum.a |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 4 | | rpvmasum2.g |
. . 3
⊢ 𝐺 = (DChr‘𝑁) |
| 5 | | rpvmasum2.d |
. . 3
⊢ 𝐷 = (Base‘𝐺) |
| 6 | | rpvmasum2.1 |
. . 3
⊢ 1 =
(0g‘𝐺) |
| 7 | | rpvmasum2.w |
. . . . . 6
⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} |
| 8 | 7 | ssrab3 4062 |
. . . . 5
⊢ 𝑊 ⊆ (𝐷 ∖ { 1 }) |
| 9 | | dchrisum0.b |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝑊) |
| 10 | 8, 9 | sselid 3961 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ (𝐷 ∖ { 1 })) |
| 11 | 10 | eldifad 3943 |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| 12 | | eldifsni 4771 |
. . . 4
⊢ (𝑋 ∈ (𝐷 ∖ { 1 }) → 𝑋 ≠ 1 ) |
| 13 | 10, 12 | syl 17 |
. . 3
⊢ (𝜑 → 𝑋 ≠ 1 ) |
| 14 | | fveq2 6881 |
. . . 4
⊢ (𝑛 = 𝑥 → (√‘𝑛) = (√‘𝑥)) |
| 15 | 14 | oveq2d 7426 |
. . 3
⊢ (𝑛 = 𝑥 → (1 / (√‘𝑛)) = (1 / (√‘𝑥))) |
| 16 | | 1nn 12256 |
. . . 4
⊢ 1 ∈
ℕ |
| 17 | 16 | a1i 11 |
. . 3
⊢ (𝜑 → 1 ∈
ℕ) |
| 18 | | rpsqrtcl 15288 |
. . . . 5
⊢ (𝑛 ∈ ℝ+
→ (√‘𝑛)
∈ ℝ+) |
| 19 | 18 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) →
(√‘𝑛) ∈
ℝ+) |
| 20 | 19 | rprecred 13067 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → (1 /
(√‘𝑛)) ∈
ℝ) |
| 21 | | simp3r 1203 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑛 ≤ 𝑥) |
| 22 | | simp2l 1200 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑛 ∈ ℝ+) |
| 23 | 22 | rprege0d 13063 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛)) |
| 24 | | simp2r 1201 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑥 ∈ ℝ+) |
| 25 | 24 | rprege0d 13063 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) |
| 26 | | sqrtle 15284 |
. . . . . 6
⊢ (((𝑛 ∈ ℝ ∧ 0 ≤
𝑛) ∧ (𝑥 ∈ ℝ ∧ 0 ≤
𝑥)) → (𝑛 ≤ 𝑥 ↔ (√‘𝑛) ≤ (√‘𝑥))) |
| 27 | 23, 25, 26 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (𝑛 ≤ 𝑥 ↔ (√‘𝑛) ≤ (√‘𝑥))) |
| 28 | 21, 27 | mpbid 232 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (√‘𝑛) ≤ (√‘𝑥)) |
| 29 | 22 | rpsqrtcld 15435 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (√‘𝑛) ∈
ℝ+) |
| 30 | 24 | rpsqrtcld 15435 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (√‘𝑥) ∈
ℝ+) |
| 31 | 29, 30 | lerecd 13075 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → ((√‘𝑛) ≤ (√‘𝑥) ↔ (1 / (√‘𝑥)) ≤ (1 /
(√‘𝑛)))) |
| 32 | 28, 31 | mpbid 232 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (1 / (√‘𝑥)) ≤ (1 /
(√‘𝑛))) |
| 33 | | sqrtlim 26940 |
. . . 4
⊢ (𝑛 ∈ ℝ+
↦ (1 / (√‘𝑛))) ⇝𝑟
0 |
| 34 | 33 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ (1 /
(√‘𝑛)))
⇝𝑟 0) |
| 35 | | 2fveq3 6886 |
. . . . 5
⊢ (𝑎 = 𝑛 → (𝑋‘(𝐿‘𝑎)) = (𝑋‘(𝐿‘𝑛))) |
| 36 | | fveq2 6881 |
. . . . . 6
⊢ (𝑎 = 𝑛 → (√‘𝑎) = (√‘𝑛)) |
| 37 | 36 | oveq2d 7426 |
. . . . 5
⊢ (𝑎 = 𝑛 → (1 / (√‘𝑎)) = (1 / (√‘𝑛))) |
| 38 | 35, 37 | oveq12d 7428 |
. . . 4
⊢ (𝑎 = 𝑛 → ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎))) = ((𝑋‘(𝐿‘𝑛)) · (1 / (√‘𝑛)))) |
| 39 | 38 | cbvmptv 5230 |
. . 3
⊢ (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎)))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · (1 / (√‘𝑛)))) |
| 40 | 1, 2, 3, 4, 5, 6, 11, 13, 15, 17, 20, 32, 34, 39 | dchrisum 27460 |
. 2
⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥))))) |
| 41 | 11 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ 𝐷) |
| 42 | | nnz 12614 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℤ) |
| 43 | 42 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ) |
| 44 | 4, 1, 5, 2, 41, 43 | dchrzrhcl 27213 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
| 45 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
| 46 | 45 | nnrpd 13054 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+) |
| 47 | 46 | rpsqrtcld 15435 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (√‘𝑛) ∈
ℝ+) |
| 48 | 47 | rpcnd 13058 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (√‘𝑛) ∈
ℂ) |
| 49 | 47 | rpne0d 13061 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (√‘𝑛) ≠ 0) |
| 50 | 44, 48, 49 | divrecd 12025 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑋‘(𝐿‘𝑛)) / (√‘𝑛)) = ((𝑋‘(𝐿‘𝑛)) · (1 / (√‘𝑛)))) |
| 51 | 50 | mpteq2dva 5219 |
. . . . . . . . 9
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) / (√‘𝑛))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · (1 / (√‘𝑛))))) |
| 52 | | dchrisum0lem1.f |
. . . . . . . . . 10
⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))) |
| 53 | 35, 36 | oveq12d 7428 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑛 → ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎)) = ((𝑋‘(𝐿‘𝑛)) / (√‘𝑛))) |
| 54 | 53 | cbvmptv 5230 |
. . . . . . . . . 10
⊢ (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) / (√‘𝑛))) |
| 55 | 52, 54 | eqtri 2759 |
. . . . . . . . 9
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) / (√‘𝑛))) |
| 56 | 51, 55, 39 | 3eqtr4g 2796 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎))))) |
| 57 | 56 | seqeq3d 14032 |
. . . . . . 7
⊢ (𝜑 → seq1( + , 𝐹) = seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎)))))) |
| 58 | 57 | breq1d 5134 |
. . . . . 6
⊢ (𝜑 → (seq1( + , 𝐹) ⇝ 𝑡 ↔ seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡)) |
| 59 | 58 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) → (seq1( + ,
𝐹) ⇝ 𝑡 ↔ seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡)) |
| 60 | | 2fveq3 6886 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘𝑥))) |
| 61 | 60 | fvoveq1d 7432 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡))) |
| 62 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (√‘𝑦) = (√‘𝑥)) |
| 63 | 62 | oveq2d 7426 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝑐 / (√‘𝑦)) = (𝑐 / (√‘𝑥))) |
| 64 | 61, 63 | breq12d 5137 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥)))) |
| 65 | 64 | cbvralvw 3224 |
. . . . . 6
⊢
(∀𝑦 ∈
(1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + ,
𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥))) |
| 66 | 56 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎))))) |
| 67 | 66 | seqeq3d 14032 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
seq1( + , 𝐹) = seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎)))))) |
| 68 | 67 | fveq1d 6883 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
(seq1( + , 𝐹)‘(⌊‘𝑥)) = (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥))) |
| 69 | 68 | fvoveq1d 7432 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) = (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡))) |
| 70 | | elrege0 13476 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ (0[,)+∞) ↔
(𝑐 ∈ ℝ ∧ 0
≤ 𝑐)) |
| 71 | 70 | simplbi 497 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ (0[,)+∞) →
𝑐 ∈
ℝ) |
| 72 | 71 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
𝑐 ∈
ℝ) |
| 73 | 72 | recnd 11268 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
𝑐 ∈
ℂ) |
| 74 | | 1re 11240 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℝ |
| 75 | | elicopnf 13467 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
ℝ → (𝑥 ∈
(1[,)+∞) ↔ (𝑥
∈ ℝ ∧ 1 ≤ 𝑥))) |
| 76 | 74, 75 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (1[,)+∞) ↔
(𝑥 ∈ ℝ ∧ 1
≤ 𝑥)) |
| 77 | 76 | simplbi 497 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (1[,)+∞) →
𝑥 ∈
ℝ) |
| 78 | 77 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
𝑥 ∈
ℝ) |
| 79 | | 0red 11243 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0
∈ ℝ) |
| 80 | | 1red 11241 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 1
∈ ℝ) |
| 81 | | 0lt1 11764 |
. . . . . . . . . . . . . 14
⊢ 0 <
1 |
| 82 | 81 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0
< 1) |
| 83 | 76 | simprbi 496 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (1[,)+∞) → 1
≤ 𝑥) |
| 84 | 83 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 1
≤ 𝑥) |
| 85 | 79, 80, 78, 82, 84 | ltletrd 11400 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0
< 𝑥) |
| 86 | 78, 85 | elrpd 13053 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
𝑥 ∈
ℝ+) |
| 87 | 86 | rpsqrtcld 15435 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
(√‘𝑥) ∈
ℝ+) |
| 88 | 87 | rpcnd 13058 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
(√‘𝑥) ∈
ℂ) |
| 89 | 87 | rpne0d 13061 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
(√‘𝑥) ≠
0) |
| 90 | 73, 88, 89 | divrecd 12025 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
(𝑐 / (√‘𝑥)) = (𝑐 · (1 / (√‘𝑥)))) |
| 91 | 69, 90 | breq12d 5137 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
((abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥)) ↔ (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥))))) |
| 92 | 91 | ralbidva 3162 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) → (∀𝑥 ∈
(1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥)) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥))))) |
| 93 | 65, 92 | bitrid 283 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) → (∀𝑦 ∈
(1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥))))) |
| 94 | 59, 93 | anbi12d 632 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) → ((seq1( + ,
𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈
(1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) ↔ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))) |
| 95 | 94 | rexbidva 3163 |
. . 3
⊢ (𝜑 → (∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) ↔ ∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))) |
| 96 | 95 | exbidv 1921 |
. 2
⊢ (𝜑 → (∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) ↔ ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))) |
| 97 | 40, 96 | mpbird 257 |
1
⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)))) |