Step | Hyp | Ref
| Expression |
1 | | rpvmasum.z |
. . 3
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) |
2 | | rpvmasum.l |
. . 3
⊢ 𝐿 = (ℤRHom‘𝑍) |
3 | | rpvmasum.a |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) |
4 | | rpvmasum2.g |
. . 3
⊢ 𝐺 = (DChr‘𝑁) |
5 | | rpvmasum2.d |
. . 3
⊢ 𝐷 = (Base‘𝐺) |
6 | | rpvmasum2.1 |
. . 3
⊢ 1 =
(0g‘𝐺) |
7 | | rpvmasum2.w |
. . . . . 6
⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} |
8 | 7 | ssrab3 4011 |
. . . . 5
⊢ 𝑊 ⊆ (𝐷 ∖ { 1 }) |
9 | | dchrisum0.b |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝑊) |
10 | 8, 9 | sselid 3915 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ (𝐷 ∖ { 1 })) |
11 | 10 | eldifad 3895 |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
12 | | eldifsni 4720 |
. . . 4
⊢ (𝑋 ∈ (𝐷 ∖ { 1 }) → 𝑋 ≠ 1 ) |
13 | 10, 12 | syl 17 |
. . 3
⊢ (𝜑 → 𝑋 ≠ 1 ) |
14 | | fveq2 6756 |
. . . 4
⊢ (𝑛 = 𝑥 → (√‘𝑛) = (√‘𝑥)) |
15 | 14 | oveq2d 7271 |
. . 3
⊢ (𝑛 = 𝑥 → (1 / (√‘𝑛)) = (1 / (√‘𝑥))) |
16 | | 1nn 11914 |
. . . 4
⊢ 1 ∈
ℕ |
17 | 16 | a1i 11 |
. . 3
⊢ (𝜑 → 1 ∈
ℕ) |
18 | | rpsqrtcl 14904 |
. . . . 5
⊢ (𝑛 ∈ ℝ+
→ (√‘𝑛)
∈ ℝ+) |
19 | 18 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) →
(√‘𝑛) ∈
ℝ+) |
20 | 19 | rprecred 12712 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → (1 /
(√‘𝑛)) ∈
ℝ) |
21 | | simp3r 1200 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑛 ≤ 𝑥) |
22 | | simp2l 1197 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑛 ∈ ℝ+) |
23 | 22 | rprege0d 12708 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛)) |
24 | | simp2r 1198 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑥 ∈ ℝ+) |
25 | 24 | rprege0d 12708 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) |
26 | | sqrtle 14900 |
. . . . . 6
⊢ (((𝑛 ∈ ℝ ∧ 0 ≤
𝑛) ∧ (𝑥 ∈ ℝ ∧ 0 ≤
𝑥)) → (𝑛 ≤ 𝑥 ↔ (√‘𝑛) ≤ (√‘𝑥))) |
27 | 23, 25, 26 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (𝑛 ≤ 𝑥 ↔ (√‘𝑛) ≤ (√‘𝑥))) |
28 | 21, 27 | mpbid 231 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (√‘𝑛) ≤ (√‘𝑥)) |
29 | 22 | rpsqrtcld 15051 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (√‘𝑛) ∈
ℝ+) |
30 | 24 | rpsqrtcld 15051 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (√‘𝑥) ∈
ℝ+) |
31 | 29, 30 | lerecd 12720 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → ((√‘𝑛) ≤ (√‘𝑥) ↔ (1 / (√‘𝑥)) ≤ (1 /
(√‘𝑛)))) |
32 | 28, 31 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (1 / (√‘𝑥)) ≤ (1 /
(√‘𝑛))) |
33 | | sqrtlim 26027 |
. . . 4
⊢ (𝑛 ∈ ℝ+
↦ (1 / (√‘𝑛))) ⇝𝑟
0 |
34 | 33 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ (1 /
(√‘𝑛)))
⇝𝑟 0) |
35 | | 2fveq3 6761 |
. . . . 5
⊢ (𝑎 = 𝑛 → (𝑋‘(𝐿‘𝑎)) = (𝑋‘(𝐿‘𝑛))) |
36 | | fveq2 6756 |
. . . . . 6
⊢ (𝑎 = 𝑛 → (√‘𝑎) = (√‘𝑛)) |
37 | 36 | oveq2d 7271 |
. . . . 5
⊢ (𝑎 = 𝑛 → (1 / (√‘𝑎)) = (1 / (√‘𝑛))) |
38 | 35, 37 | oveq12d 7273 |
. . . 4
⊢ (𝑎 = 𝑛 → ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎))) = ((𝑋‘(𝐿‘𝑛)) · (1 / (√‘𝑛)))) |
39 | 38 | cbvmptv 5183 |
. . 3
⊢ (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎)))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · (1 / (√‘𝑛)))) |
40 | 1, 2, 3, 4, 5, 6, 11, 13, 15, 17, 20, 32, 34, 39 | dchrisum 26545 |
. 2
⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥))))) |
41 | 11 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ 𝐷) |
42 | | nnz 12272 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℤ) |
43 | 42 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ) |
44 | 4, 1, 5, 2, 41, 43 | dchrzrhcl 26298 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
45 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
46 | 45 | nnrpd 12699 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+) |
47 | 46 | rpsqrtcld 15051 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (√‘𝑛) ∈
ℝ+) |
48 | 47 | rpcnd 12703 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (√‘𝑛) ∈
ℂ) |
49 | 47 | rpne0d 12706 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (√‘𝑛) ≠ 0) |
50 | 44, 48, 49 | divrecd 11684 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑋‘(𝐿‘𝑛)) / (√‘𝑛)) = ((𝑋‘(𝐿‘𝑛)) · (1 / (√‘𝑛)))) |
51 | 50 | mpteq2dva 5170 |
. . . . . . . . 9
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) / (√‘𝑛))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · (1 / (√‘𝑛))))) |
52 | | dchrisum0lem1.f |
. . . . . . . . . 10
⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))) |
53 | 35, 36 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑛 → ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎)) = ((𝑋‘(𝐿‘𝑛)) / (√‘𝑛))) |
54 | 53 | cbvmptv 5183 |
. . . . . . . . . 10
⊢ (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) / (√‘𝑛))) |
55 | 52, 54 | eqtri 2766 |
. . . . . . . . 9
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) / (√‘𝑛))) |
56 | 51, 55, 39 | 3eqtr4g 2804 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎))))) |
57 | 56 | seqeq3d 13657 |
. . . . . . 7
⊢ (𝜑 → seq1( + , 𝐹) = seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎)))))) |
58 | 57 | breq1d 5080 |
. . . . . 6
⊢ (𝜑 → (seq1( + , 𝐹) ⇝ 𝑡 ↔ seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡)) |
59 | 58 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) → (seq1( + ,
𝐹) ⇝ 𝑡 ↔ seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡)) |
60 | | 2fveq3 6761 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘𝑥))) |
61 | 60 | fvoveq1d 7277 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡))) |
62 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (√‘𝑦) = (√‘𝑥)) |
63 | 62 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝑐 / (√‘𝑦)) = (𝑐 / (√‘𝑥))) |
64 | 61, 63 | breq12d 5083 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥)))) |
65 | 64 | cbvralvw 3372 |
. . . . . 6
⊢
(∀𝑦 ∈
(1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + ,
𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥))) |
66 | 56 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎))))) |
67 | 66 | seqeq3d 13657 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
seq1( + , 𝐹) = seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎)))))) |
68 | 67 | fveq1d 6758 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
(seq1( + , 𝐹)‘(⌊‘𝑥)) = (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥))) |
69 | 68 | fvoveq1d 7277 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) = (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡))) |
70 | | elrege0 13115 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ (0[,)+∞) ↔
(𝑐 ∈ ℝ ∧ 0
≤ 𝑐)) |
71 | 70 | simplbi 497 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ (0[,)+∞) →
𝑐 ∈
ℝ) |
72 | 71 | ad2antlr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
𝑐 ∈
ℝ) |
73 | 72 | recnd 10934 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
𝑐 ∈
ℂ) |
74 | | 1re 10906 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℝ |
75 | | elicopnf 13106 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
ℝ → (𝑥 ∈
(1[,)+∞) ↔ (𝑥
∈ ℝ ∧ 1 ≤ 𝑥))) |
76 | 74, 75 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (1[,)+∞) ↔
(𝑥 ∈ ℝ ∧ 1
≤ 𝑥)) |
77 | 76 | simplbi 497 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (1[,)+∞) →
𝑥 ∈
ℝ) |
78 | 77 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
𝑥 ∈
ℝ) |
79 | | 0red 10909 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0
∈ ℝ) |
80 | | 1red 10907 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 1
∈ ℝ) |
81 | | 0lt1 11427 |
. . . . . . . . . . . . . 14
⊢ 0 <
1 |
82 | 81 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0
< 1) |
83 | 76 | simprbi 496 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (1[,)+∞) → 1
≤ 𝑥) |
84 | 83 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 1
≤ 𝑥) |
85 | 79, 80, 78, 82, 84 | ltletrd 11065 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0
< 𝑥) |
86 | 78, 85 | elrpd 12698 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
𝑥 ∈
ℝ+) |
87 | 86 | rpsqrtcld 15051 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
(√‘𝑥) ∈
ℝ+) |
88 | 87 | rpcnd 12703 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
(√‘𝑥) ∈
ℂ) |
89 | 87 | rpne0d 12706 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
(√‘𝑥) ≠
0) |
90 | 73, 88, 89 | divrecd 11684 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
(𝑐 / (√‘𝑥)) = (𝑐 · (1 / (√‘𝑥)))) |
91 | 69, 90 | breq12d 5083 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
((abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥)) ↔ (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥))))) |
92 | 91 | ralbidva 3119 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) → (∀𝑥 ∈
(1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥)) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥))))) |
93 | 65, 92 | syl5bb 282 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) → (∀𝑦 ∈
(1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥))))) |
94 | 59, 93 | anbi12d 630 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) → ((seq1( + ,
𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈
(1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) ↔ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))) |
95 | 94 | rexbidva 3224 |
. . 3
⊢ (𝜑 → (∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) ↔ ∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))) |
96 | 95 | exbidv 1925 |
. 2
⊢ (𝜑 → (∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) ↔ ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))) |
97 | 40, 96 | mpbird 256 |
1
⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)))) |