MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lema Structured version   Visualization version   GIF version

Theorem dchrisum0lema 27482
Description: Lemma for dchrisum0 27488. Apply dchrisum 27460 for the function 1 / √𝑦. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
dchrisum0lem1.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
Assertion
Ref Expression
dchrisum0lema (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))
Distinct variable groups:   𝑦,𝑚,𝑐,𝑡, 1   𝐹,𝑐,𝑡,𝑦   𝑎,𝑐,𝑚,𝑡,𝑦   𝑁,𝑐,𝑚,𝑡,𝑦   𝜑,𝑐,𝑚,𝑡   𝑊,𝑐,𝑡   𝑚,𝑍,𝑦   𝐷,𝑐,𝑚,𝑡,𝑦   𝐿,𝑎,𝑐,𝑚,𝑡,𝑦   𝑋,𝑎,𝑐,𝑚,𝑡,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐷(𝑎)   1 (𝑎)   𝐹(𝑎)   𝐺(𝑦,𝑡,𝑚,𝑎,𝑐)   𝑁(𝑎)   𝑊(𝑦,𝑚,𝑎)   𝑍(𝑡,𝑎,𝑐)

Proof of Theorem dchrisum0lema
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . . 3 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . . 3 (𝜑𝑁 ∈ ℕ)
4 rpvmasum2.g . . 3 𝐺 = (DChr‘𝑁)
5 rpvmasum2.d . . 3 𝐷 = (Base‘𝐺)
6 rpvmasum2.1 . . 3 1 = (0g𝐺)
7 rpvmasum2.w . . . . . 6 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
87ssrab3 4062 . . . . 5 𝑊 ⊆ (𝐷 ∖ { 1 })
9 dchrisum0.b . . . . 5 (𝜑𝑋𝑊)
108, 9sselid 3961 . . . 4 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
1110eldifad 3943 . . 3 (𝜑𝑋𝐷)
12 eldifsni 4771 . . . 4 (𝑋 ∈ (𝐷 ∖ { 1 }) → 𝑋1 )
1310, 12syl 17 . . 3 (𝜑𝑋1 )
14 fveq2 6881 . . . 4 (𝑛 = 𝑥 → (√‘𝑛) = (√‘𝑥))
1514oveq2d 7426 . . 3 (𝑛 = 𝑥 → (1 / (√‘𝑛)) = (1 / (√‘𝑥)))
16 1nn 12256 . . . 4 1 ∈ ℕ
1716a1i 11 . . 3 (𝜑 → 1 ∈ ℕ)
18 rpsqrtcl 15288 . . . . 5 (𝑛 ∈ ℝ+ → (√‘𝑛) ∈ ℝ+)
1918adantl 481 . . . 4 ((𝜑𝑛 ∈ ℝ+) → (√‘𝑛) ∈ ℝ+)
2019rprecred 13067 . . 3 ((𝜑𝑛 ∈ ℝ+) → (1 / (√‘𝑛)) ∈ ℝ)
21 simp3r 1203 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → 𝑛𝑥)
22 simp2l 1200 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → 𝑛 ∈ ℝ+)
2322rprege0d 13063 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛))
24 simp2r 1201 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → 𝑥 ∈ ℝ+)
2524rprege0d 13063 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
26 sqrtle 15284 . . . . . 6 (((𝑛 ∈ ℝ ∧ 0 ≤ 𝑛) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (𝑛𝑥 ↔ (√‘𝑛) ≤ (√‘𝑥)))
2723, 25, 26syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (𝑛𝑥 ↔ (√‘𝑛) ≤ (√‘𝑥)))
2821, 27mpbid 232 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (√‘𝑛) ≤ (√‘𝑥))
2922rpsqrtcld 15435 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (√‘𝑛) ∈ ℝ+)
3024rpsqrtcld 15435 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (√‘𝑥) ∈ ℝ+)
3129, 30lerecd 13075 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → ((√‘𝑛) ≤ (√‘𝑥) ↔ (1 / (√‘𝑥)) ≤ (1 / (√‘𝑛))))
3228, 31mpbid 232 . . 3 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (1 / (√‘𝑥)) ≤ (1 / (√‘𝑛)))
33 sqrtlim 26940 . . . 4 (𝑛 ∈ ℝ+ ↦ (1 / (√‘𝑛))) ⇝𝑟 0
3433a1i 11 . . 3 (𝜑 → (𝑛 ∈ ℝ+ ↦ (1 / (√‘𝑛))) ⇝𝑟 0)
35 2fveq3 6886 . . . . 5 (𝑎 = 𝑛 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑛)))
36 fveq2 6881 . . . . . 6 (𝑎 = 𝑛 → (√‘𝑎) = (√‘𝑛))
3736oveq2d 7426 . . . . 5 (𝑎 = 𝑛 → (1 / (√‘𝑎)) = (1 / (√‘𝑛)))
3835, 37oveq12d 7428 . . . 4 (𝑎 = 𝑛 → ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))) = ((𝑋‘(𝐿𝑛)) · (1 / (√‘𝑛))))
3938cbvmptv 5230 . . 3 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · (1 / (√‘𝑛))))
401, 2, 3, 4, 5, 6, 11, 13, 15, 17, 20, 32, 34, 39dchrisum 27460 . 2 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))
4111adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑋𝐷)
42 nnz 12614 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
4342adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
444, 1, 5, 2, 41, 43dchrzrhcl 27213 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
45 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
4645nnrpd 13054 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
4746rpsqrtcld 15435 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (√‘𝑛) ∈ ℝ+)
4847rpcnd 13058 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (√‘𝑛) ∈ ℂ)
4947rpne0d 13061 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (√‘𝑛) ≠ 0)
5044, 48, 49divrecd 12025 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑋‘(𝐿𝑛)) / (√‘𝑛)) = ((𝑋‘(𝐿𝑛)) · (1 / (√‘𝑛))))
5150mpteq2dva 5219 . . . . . . . . 9 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) / (√‘𝑛))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · (1 / (√‘𝑛)))))
52 dchrisum0lem1.f . . . . . . . . . 10 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
5335, 36oveq12d 7428 . . . . . . . . . . 11 (𝑎 = 𝑛 → ((𝑋‘(𝐿𝑎)) / (√‘𝑎)) = ((𝑋‘(𝐿𝑛)) / (√‘𝑛)))
5453cbvmptv 5230 . . . . . . . . . 10 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) / (√‘𝑛)))
5552, 54eqtri 2759 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) / (√‘𝑛)))
5651, 55, 393eqtr4g 2796 . . . . . . . 8 (𝜑𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))
5756seqeq3d 14032 . . . . . . 7 (𝜑 → seq1( + , 𝐹) = seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))))
5857breq1d 5134 . . . . . 6 (𝜑 → (seq1( + , 𝐹) ⇝ 𝑡 ↔ seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡))
5958adantr 480 . . . . 5 ((𝜑𝑐 ∈ (0[,)+∞)) → (seq1( + , 𝐹) ⇝ 𝑡 ↔ seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡))
60 2fveq3 6886 . . . . . . . . 9 (𝑦 = 𝑥 → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
6160fvoveq1d 7432 . . . . . . . 8 (𝑦 = 𝑥 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)))
62 fveq2 6881 . . . . . . . . 9 (𝑦 = 𝑥 → (√‘𝑦) = (√‘𝑥))
6362oveq2d 7426 . . . . . . . 8 (𝑦 = 𝑥 → (𝑐 / (√‘𝑦)) = (𝑐 / (√‘𝑥)))
6461, 63breq12d 5137 . . . . . . 7 (𝑦 = 𝑥 → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥))))
6564cbvralvw 3224 . . . . . 6 (∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥)))
6656ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))
6766seqeq3d 14032 . . . . . . . . . 10 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → seq1( + , 𝐹) = seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))))
6867fveq1d 6883 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (seq1( + , 𝐹)‘(⌊‘𝑥)) = (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)))
6968fvoveq1d 7432 . . . . . . . 8 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) = (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)))
70 elrege0 13476 . . . . . . . . . . . 12 (𝑐 ∈ (0[,)+∞) ↔ (𝑐 ∈ ℝ ∧ 0 ≤ 𝑐))
7170simplbi 497 . . . . . . . . . . 11 (𝑐 ∈ (0[,)+∞) → 𝑐 ∈ ℝ)
7271ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑐 ∈ ℝ)
7372recnd 11268 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑐 ∈ ℂ)
74 1re 11240 . . . . . . . . . . . . . . 15 1 ∈ ℝ
75 elicopnf 13467 . . . . . . . . . . . . . . 15 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
7674, 75ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
7776simplbi 497 . . . . . . . . . . . . 13 (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ)
7877adantl 481 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ)
79 0red 11243 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0 ∈ ℝ)
80 1red 11241 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 1 ∈ ℝ)
81 0lt1 11764 . . . . . . . . . . . . . 14 0 < 1
8281a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0 < 1)
8376simprbi 496 . . . . . . . . . . . . . 14 (𝑥 ∈ (1[,)+∞) → 1 ≤ 𝑥)
8483adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
8579, 80, 78, 82, 84ltletrd 11400 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0 < 𝑥)
8678, 85elrpd 13053 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ+)
8786rpsqrtcld 15435 . . . . . . . . . 10 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (√‘𝑥) ∈ ℝ+)
8887rpcnd 13058 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (√‘𝑥) ∈ ℂ)
8987rpne0d 13061 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (√‘𝑥) ≠ 0)
9073, 88, 89divrecd 12025 . . . . . . . 8 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (𝑐 / (√‘𝑥)) = (𝑐 · (1 / (√‘𝑥))))
9169, 90breq12d 5137 . . . . . . 7 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥)) ↔ (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))
9291ralbidva 3162 . . . . . 6 ((𝜑𝑐 ∈ (0[,)+∞)) → (∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥)) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))
9365, 92bitrid 283 . . . . 5 ((𝜑𝑐 ∈ (0[,)+∞)) → (∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))
9459, 93anbi12d 632 . . . 4 ((𝜑𝑐 ∈ (0[,)+∞)) → ((seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) ↔ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥))))))
9594rexbidva 3163 . . 3 (𝜑 → (∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) ↔ ∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥))))))
9695exbidv 1921 . 2 (𝜑 → (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) ↔ ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥))))))
9740, 96mpbird 257 1 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2933  wral 3052  wrex 3061  {crab 3420  cdif 3928  {csn 4606   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  +∞cpnf 11271   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  cn 12245  cz 12593  +crp 13013  [,)cico 13369  cfl 13812  seqcseq 14024  csqrt 15257  abscabs 15258  cli 15505  𝑟 crli 15506  Σcsu 15707  Basecbs 17233  0gc0g 17458  ℤRHomczrh 21465  ℤ/nczn 21468  DChrcdchr 27200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-ec 8726  df-qs 8730  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-dvds 16278  df-gcd 16519  df-phi 16790  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-qus 17528  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-nsg 19112  df-eqg 19113  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-rhm 20437  df-subrng 20511  df-subrg 20535  df-lmod 20824  df-lss 20894  df-lsp 20934  df-sra 21136  df-rgmod 21137  df-lidl 21174  df-rsp 21175  df-2idl 21216  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-zring 21413  df-zrh 21469  df-zn 21472  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-log 26522  df-cxp 26523  df-dchr 27201
This theorem is referenced by:  dchrisum0  27488
  Copyright terms: Public domain W3C validator