MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lema Structured version   Visualization version   GIF version

Theorem dchrisum0lema 26862
Description: Lemma for dchrisum0 26868. Apply dchrisum 26840 for the function 1 / √𝑦. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
dchrisum0lem1.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
Assertion
Ref Expression
dchrisum0lema (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))
Distinct variable groups:   𝑦,𝑚,𝑐,𝑡, 1   𝐹,𝑐,𝑡,𝑦   𝑎,𝑐,𝑚,𝑡,𝑦   𝑁,𝑐,𝑚,𝑡,𝑦   𝜑,𝑐,𝑚,𝑡   𝑊,𝑐,𝑡   𝑚,𝑍,𝑦   𝐷,𝑐,𝑚,𝑡,𝑦   𝐿,𝑎,𝑐,𝑚,𝑡,𝑦   𝑋,𝑎,𝑐,𝑚,𝑡,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐷(𝑎)   1 (𝑎)   𝐹(𝑎)   𝐺(𝑦,𝑡,𝑚,𝑎,𝑐)   𝑁(𝑎)   𝑊(𝑦,𝑚,𝑎)   𝑍(𝑡,𝑎,𝑐)

Proof of Theorem dchrisum0lema
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . . 3 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . . 3 (𝜑𝑁 ∈ ℕ)
4 rpvmasum2.g . . 3 𝐺 = (DChr‘𝑁)
5 rpvmasum2.d . . 3 𝐷 = (Base‘𝐺)
6 rpvmasum2.1 . . 3 1 = (0g𝐺)
7 rpvmasum2.w . . . . . 6 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
87ssrab3 4040 . . . . 5 𝑊 ⊆ (𝐷 ∖ { 1 })
9 dchrisum0.b . . . . 5 (𝜑𝑋𝑊)
108, 9sselid 3942 . . . 4 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
1110eldifad 3922 . . 3 (𝜑𝑋𝐷)
12 eldifsni 4750 . . . 4 (𝑋 ∈ (𝐷 ∖ { 1 }) → 𝑋1 )
1310, 12syl 17 . . 3 (𝜑𝑋1 )
14 fveq2 6842 . . . 4 (𝑛 = 𝑥 → (√‘𝑛) = (√‘𝑥))
1514oveq2d 7373 . . 3 (𝑛 = 𝑥 → (1 / (√‘𝑛)) = (1 / (√‘𝑥)))
16 1nn 12164 . . . 4 1 ∈ ℕ
1716a1i 11 . . 3 (𝜑 → 1 ∈ ℕ)
18 rpsqrtcl 15149 . . . . 5 (𝑛 ∈ ℝ+ → (√‘𝑛) ∈ ℝ+)
1918adantl 482 . . . 4 ((𝜑𝑛 ∈ ℝ+) → (√‘𝑛) ∈ ℝ+)
2019rprecred 12968 . . 3 ((𝜑𝑛 ∈ ℝ+) → (1 / (√‘𝑛)) ∈ ℝ)
21 simp3r 1202 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → 𝑛𝑥)
22 simp2l 1199 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → 𝑛 ∈ ℝ+)
2322rprege0d 12964 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛))
24 simp2r 1200 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → 𝑥 ∈ ℝ+)
2524rprege0d 12964 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
26 sqrtle 15145 . . . . . 6 (((𝑛 ∈ ℝ ∧ 0 ≤ 𝑛) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (𝑛𝑥 ↔ (√‘𝑛) ≤ (√‘𝑥)))
2723, 25, 26syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (𝑛𝑥 ↔ (√‘𝑛) ≤ (√‘𝑥)))
2821, 27mpbid 231 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (√‘𝑛) ≤ (√‘𝑥))
2922rpsqrtcld 15296 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (√‘𝑛) ∈ ℝ+)
3024rpsqrtcld 15296 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (√‘𝑥) ∈ ℝ+)
3129, 30lerecd 12976 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → ((√‘𝑛) ≤ (√‘𝑥) ↔ (1 / (√‘𝑥)) ≤ (1 / (√‘𝑛))))
3228, 31mpbid 231 . . 3 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (1 / (√‘𝑥)) ≤ (1 / (√‘𝑛)))
33 sqrtlim 26322 . . . 4 (𝑛 ∈ ℝ+ ↦ (1 / (√‘𝑛))) ⇝𝑟 0
3433a1i 11 . . 3 (𝜑 → (𝑛 ∈ ℝ+ ↦ (1 / (√‘𝑛))) ⇝𝑟 0)
35 2fveq3 6847 . . . . 5 (𝑎 = 𝑛 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑛)))
36 fveq2 6842 . . . . . 6 (𝑎 = 𝑛 → (√‘𝑎) = (√‘𝑛))
3736oveq2d 7373 . . . . 5 (𝑎 = 𝑛 → (1 / (√‘𝑎)) = (1 / (√‘𝑛)))
3835, 37oveq12d 7375 . . . 4 (𝑎 = 𝑛 → ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))) = ((𝑋‘(𝐿𝑛)) · (1 / (√‘𝑛))))
3938cbvmptv 5218 . . 3 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · (1 / (√‘𝑛))))
401, 2, 3, 4, 5, 6, 11, 13, 15, 17, 20, 32, 34, 39dchrisum 26840 . 2 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))
4111adantr 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑋𝐷)
42 nnz 12520 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
4342adantl 482 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
444, 1, 5, 2, 41, 43dchrzrhcl 26593 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
45 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
4645nnrpd 12955 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
4746rpsqrtcld 15296 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (√‘𝑛) ∈ ℝ+)
4847rpcnd 12959 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (√‘𝑛) ∈ ℂ)
4947rpne0d 12962 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (√‘𝑛) ≠ 0)
5044, 48, 49divrecd 11934 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑋‘(𝐿𝑛)) / (√‘𝑛)) = ((𝑋‘(𝐿𝑛)) · (1 / (√‘𝑛))))
5150mpteq2dva 5205 . . . . . . . . 9 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) / (√‘𝑛))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · (1 / (√‘𝑛)))))
52 dchrisum0lem1.f . . . . . . . . . 10 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
5335, 36oveq12d 7375 . . . . . . . . . . 11 (𝑎 = 𝑛 → ((𝑋‘(𝐿𝑎)) / (√‘𝑎)) = ((𝑋‘(𝐿𝑛)) / (√‘𝑛)))
5453cbvmptv 5218 . . . . . . . . . 10 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) / (√‘𝑛)))
5552, 54eqtri 2764 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) / (√‘𝑛)))
5651, 55, 393eqtr4g 2801 . . . . . . . 8 (𝜑𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))
5756seqeq3d 13914 . . . . . . 7 (𝜑 → seq1( + , 𝐹) = seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))))
5857breq1d 5115 . . . . . 6 (𝜑 → (seq1( + , 𝐹) ⇝ 𝑡 ↔ seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡))
5958adantr 481 . . . . 5 ((𝜑𝑐 ∈ (0[,)+∞)) → (seq1( + , 𝐹) ⇝ 𝑡 ↔ seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡))
60 2fveq3 6847 . . . . . . . . 9 (𝑦 = 𝑥 → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
6160fvoveq1d 7379 . . . . . . . 8 (𝑦 = 𝑥 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)))
62 fveq2 6842 . . . . . . . . 9 (𝑦 = 𝑥 → (√‘𝑦) = (√‘𝑥))
6362oveq2d 7373 . . . . . . . 8 (𝑦 = 𝑥 → (𝑐 / (√‘𝑦)) = (𝑐 / (√‘𝑥)))
6461, 63breq12d 5118 . . . . . . 7 (𝑦 = 𝑥 → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥))))
6564cbvralvw 3225 . . . . . 6 (∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥)))
6656ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))
6766seqeq3d 13914 . . . . . . . . . 10 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → seq1( + , 𝐹) = seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))))
6867fveq1d 6844 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (seq1( + , 𝐹)‘(⌊‘𝑥)) = (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)))
6968fvoveq1d 7379 . . . . . . . 8 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) = (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)))
70 elrege0 13371 . . . . . . . . . . . 12 (𝑐 ∈ (0[,)+∞) ↔ (𝑐 ∈ ℝ ∧ 0 ≤ 𝑐))
7170simplbi 498 . . . . . . . . . . 11 (𝑐 ∈ (0[,)+∞) → 𝑐 ∈ ℝ)
7271ad2antlr 725 . . . . . . . . . 10 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑐 ∈ ℝ)
7372recnd 11183 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑐 ∈ ℂ)
74 1re 11155 . . . . . . . . . . . . . . 15 1 ∈ ℝ
75 elicopnf 13362 . . . . . . . . . . . . . . 15 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
7674, 75ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
7776simplbi 498 . . . . . . . . . . . . 13 (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ)
7877adantl 482 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ)
79 0red 11158 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0 ∈ ℝ)
80 1red 11156 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 1 ∈ ℝ)
81 0lt1 11677 . . . . . . . . . . . . . 14 0 < 1
8281a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0 < 1)
8376simprbi 497 . . . . . . . . . . . . . 14 (𝑥 ∈ (1[,)+∞) → 1 ≤ 𝑥)
8483adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
8579, 80, 78, 82, 84ltletrd 11315 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0 < 𝑥)
8678, 85elrpd 12954 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ+)
8786rpsqrtcld 15296 . . . . . . . . . 10 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (√‘𝑥) ∈ ℝ+)
8887rpcnd 12959 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (√‘𝑥) ∈ ℂ)
8987rpne0d 12962 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (√‘𝑥) ≠ 0)
9073, 88, 89divrecd 11934 . . . . . . . 8 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (𝑐 / (√‘𝑥)) = (𝑐 · (1 / (√‘𝑥))))
9169, 90breq12d 5118 . . . . . . 7 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥)) ↔ (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))
9291ralbidva 3172 . . . . . 6 ((𝜑𝑐 ∈ (0[,)+∞)) → (∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥)) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))
9365, 92bitrid 282 . . . . 5 ((𝜑𝑐 ∈ (0[,)+∞)) → (∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))
9459, 93anbi12d 631 . . . 4 ((𝜑𝑐 ∈ (0[,)+∞)) → ((seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) ↔ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥))))))
9594rexbidva 3173 . . 3 (𝜑 → (∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) ↔ ∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥))))))
9695exbidv 1924 . 2 (𝜑 → (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) ↔ ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥))))))
9740, 96mpbird 256 1 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  cdif 3907  {csn 4586   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  +∞cpnf 11186   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  cz 12499  +crp 12915  [,)cico 13266  cfl 13695  seqcseq 13906  csqrt 15118  abscabs 15119  cli 15366  𝑟 crli 15367  Σcsu 15570  Basecbs 17083  0gc0g 17321  ℤRHomczrh 20900  ℤ/nczn 20903  DChrcdchr 26580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-ec 8650  df-qs 8654  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-dvds 16137  df-gcd 16375  df-phi 16638  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-qus 17391  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-nsg 18926  df-eqg 18927  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-rnghom 20146  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-sra 20633  df-rgmod 20634  df-lidl 20635  df-rsp 20636  df-2idl 20702  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-zring 20870  df-zrh 20904  df-zn 20907  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-cxp 25913  df-dchr 26581
This theorem is referenced by:  dchrisum0  26868
  Copyright terms: Public domain W3C validator