MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lema Structured version   Visualization version   GIF version

Theorem dchrisum0lema 27567
Description: Lemma for dchrisum0 27573. Apply dchrisum 27545 for the function 1 / √𝑦. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
dchrisum0lem1.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
Assertion
Ref Expression
dchrisum0lema (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))
Distinct variable groups:   𝑦,𝑚,𝑐,𝑡, 1   𝐹,𝑐,𝑡,𝑦   𝑎,𝑐,𝑚,𝑡,𝑦   𝑁,𝑐,𝑚,𝑡,𝑦   𝜑,𝑐,𝑚,𝑡   𝑊,𝑐,𝑡   𝑚,𝑍,𝑦   𝐷,𝑐,𝑚,𝑡,𝑦   𝐿,𝑎,𝑐,𝑚,𝑡,𝑦   𝑋,𝑎,𝑐,𝑚,𝑡,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐷(𝑎)   1 (𝑎)   𝐹(𝑎)   𝐺(𝑦,𝑡,𝑚,𝑎,𝑐)   𝑁(𝑎)   𝑊(𝑦,𝑚,𝑎)   𝑍(𝑡,𝑎,𝑐)

Proof of Theorem dchrisum0lema
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . . 3 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . . 3 (𝜑𝑁 ∈ ℕ)
4 rpvmasum2.g . . 3 𝐺 = (DChr‘𝑁)
5 rpvmasum2.d . . 3 𝐷 = (Base‘𝐺)
6 rpvmasum2.1 . . 3 1 = (0g𝐺)
7 rpvmasum2.w . . . . . 6 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
87ssrab3 4099 . . . . 5 𝑊 ⊆ (𝐷 ∖ { 1 })
9 dchrisum0.b . . . . 5 (𝜑𝑋𝑊)
108, 9sselid 4000 . . . 4 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
1110eldifad 3982 . . 3 (𝜑𝑋𝐷)
12 eldifsni 4815 . . . 4 (𝑋 ∈ (𝐷 ∖ { 1 }) → 𝑋1 )
1310, 12syl 17 . . 3 (𝜑𝑋1 )
14 fveq2 6919 . . . 4 (𝑛 = 𝑥 → (√‘𝑛) = (√‘𝑥))
1514oveq2d 7461 . . 3 (𝑛 = 𝑥 → (1 / (√‘𝑛)) = (1 / (√‘𝑥)))
16 1nn 12300 . . . 4 1 ∈ ℕ
1716a1i 11 . . 3 (𝜑 → 1 ∈ ℕ)
18 rpsqrtcl 15309 . . . . 5 (𝑛 ∈ ℝ+ → (√‘𝑛) ∈ ℝ+)
1918adantl 481 . . . 4 ((𝜑𝑛 ∈ ℝ+) → (√‘𝑛) ∈ ℝ+)
2019rprecred 13106 . . 3 ((𝜑𝑛 ∈ ℝ+) → (1 / (√‘𝑛)) ∈ ℝ)
21 simp3r 1202 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → 𝑛𝑥)
22 simp2l 1199 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → 𝑛 ∈ ℝ+)
2322rprege0d 13102 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛))
24 simp2r 1200 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → 𝑥 ∈ ℝ+)
2524rprege0d 13102 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
26 sqrtle 15305 . . . . . 6 (((𝑛 ∈ ℝ ∧ 0 ≤ 𝑛) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (𝑛𝑥 ↔ (√‘𝑛) ≤ (√‘𝑥)))
2723, 25, 26syl2anc 583 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (𝑛𝑥 ↔ (√‘𝑛) ≤ (√‘𝑥)))
2821, 27mpbid 232 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (√‘𝑛) ≤ (√‘𝑥))
2922rpsqrtcld 15456 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (√‘𝑛) ∈ ℝ+)
3024rpsqrtcld 15456 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (√‘𝑥) ∈ ℝ+)
3129, 30lerecd 13114 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → ((√‘𝑛) ≤ (√‘𝑥) ↔ (1 / (√‘𝑥)) ≤ (1 / (√‘𝑛))))
3228, 31mpbid 232 . . 3 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (1 / (√‘𝑥)) ≤ (1 / (√‘𝑛)))
33 sqrtlim 27025 . . . 4 (𝑛 ∈ ℝ+ ↦ (1 / (√‘𝑛))) ⇝𝑟 0
3433a1i 11 . . 3 (𝜑 → (𝑛 ∈ ℝ+ ↦ (1 / (√‘𝑛))) ⇝𝑟 0)
35 2fveq3 6924 . . . . 5 (𝑎 = 𝑛 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑛)))
36 fveq2 6919 . . . . . 6 (𝑎 = 𝑛 → (√‘𝑎) = (√‘𝑛))
3736oveq2d 7461 . . . . 5 (𝑎 = 𝑛 → (1 / (√‘𝑎)) = (1 / (√‘𝑛)))
3835, 37oveq12d 7463 . . . 4 (𝑎 = 𝑛 → ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))) = ((𝑋‘(𝐿𝑛)) · (1 / (√‘𝑛))))
3938cbvmptv 5282 . . 3 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · (1 / (√‘𝑛))))
401, 2, 3, 4, 5, 6, 11, 13, 15, 17, 20, 32, 34, 39dchrisum 27545 . 2 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))
4111adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑋𝐷)
42 nnz 12656 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
4342adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
444, 1, 5, 2, 41, 43dchrzrhcl 27298 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
45 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
4645nnrpd 13093 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
4746rpsqrtcld 15456 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (√‘𝑛) ∈ ℝ+)
4847rpcnd 13097 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (√‘𝑛) ∈ ℂ)
4947rpne0d 13100 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (√‘𝑛) ≠ 0)
5044, 48, 49divrecd 12069 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑋‘(𝐿𝑛)) / (√‘𝑛)) = ((𝑋‘(𝐿𝑛)) · (1 / (√‘𝑛))))
5150mpteq2dva 5269 . . . . . . . . 9 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) / (√‘𝑛))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · (1 / (√‘𝑛)))))
52 dchrisum0lem1.f . . . . . . . . . 10 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
5335, 36oveq12d 7463 . . . . . . . . . . 11 (𝑎 = 𝑛 → ((𝑋‘(𝐿𝑎)) / (√‘𝑎)) = ((𝑋‘(𝐿𝑛)) / (√‘𝑛)))
5453cbvmptv 5282 . . . . . . . . . 10 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) / (√‘𝑛)))
5552, 54eqtri 2762 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) / (√‘𝑛)))
5651, 55, 393eqtr4g 2799 . . . . . . . 8 (𝜑𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))
5756seqeq3d 14056 . . . . . . 7 (𝜑 → seq1( + , 𝐹) = seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))))
5857breq1d 5179 . . . . . 6 (𝜑 → (seq1( + , 𝐹) ⇝ 𝑡 ↔ seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡))
5958adantr 480 . . . . 5 ((𝜑𝑐 ∈ (0[,)+∞)) → (seq1( + , 𝐹) ⇝ 𝑡 ↔ seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡))
60 2fveq3 6924 . . . . . . . . 9 (𝑦 = 𝑥 → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
6160fvoveq1d 7467 . . . . . . . 8 (𝑦 = 𝑥 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)))
62 fveq2 6919 . . . . . . . . 9 (𝑦 = 𝑥 → (√‘𝑦) = (√‘𝑥))
6362oveq2d 7461 . . . . . . . 8 (𝑦 = 𝑥 → (𝑐 / (√‘𝑦)) = (𝑐 / (√‘𝑥)))
6461, 63breq12d 5182 . . . . . . 7 (𝑦 = 𝑥 → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥))))
6564cbvralvw 3238 . . . . . 6 (∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥)))
6656ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))
6766seqeq3d 14056 . . . . . . . . . 10 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → seq1( + , 𝐹) = seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))))
6867fveq1d 6921 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (seq1( + , 𝐹)‘(⌊‘𝑥)) = (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)))
6968fvoveq1d 7467 . . . . . . . 8 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) = (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)))
70 elrege0 13510 . . . . . . . . . . . 12 (𝑐 ∈ (0[,)+∞) ↔ (𝑐 ∈ ℝ ∧ 0 ≤ 𝑐))
7170simplbi 497 . . . . . . . . . . 11 (𝑐 ∈ (0[,)+∞) → 𝑐 ∈ ℝ)
7271ad2antlr 726 . . . . . . . . . 10 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑐 ∈ ℝ)
7372recnd 11314 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑐 ∈ ℂ)
74 1re 11286 . . . . . . . . . . . . . . 15 1 ∈ ℝ
75 elicopnf 13501 . . . . . . . . . . . . . . 15 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
7674, 75ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
7776simplbi 497 . . . . . . . . . . . . 13 (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ)
7877adantl 481 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ)
79 0red 11289 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0 ∈ ℝ)
80 1red 11287 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 1 ∈ ℝ)
81 0lt1 11808 . . . . . . . . . . . . . 14 0 < 1
8281a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0 < 1)
8376simprbi 496 . . . . . . . . . . . . . 14 (𝑥 ∈ (1[,)+∞) → 1 ≤ 𝑥)
8483adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
8579, 80, 78, 82, 84ltletrd 11446 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0 < 𝑥)
8678, 85elrpd 13092 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ+)
8786rpsqrtcld 15456 . . . . . . . . . 10 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (√‘𝑥) ∈ ℝ+)
8887rpcnd 13097 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (√‘𝑥) ∈ ℂ)
8987rpne0d 13100 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (√‘𝑥) ≠ 0)
9073, 88, 89divrecd 12069 . . . . . . . 8 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (𝑐 / (√‘𝑥)) = (𝑐 · (1 / (√‘𝑥))))
9169, 90breq12d 5182 . . . . . . 7 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥)) ↔ (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))
9291ralbidva 3178 . . . . . 6 ((𝜑𝑐 ∈ (0[,)+∞)) → (∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥)) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))
9365, 92bitrid 283 . . . . 5 ((𝜑𝑐 ∈ (0[,)+∞)) → (∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))
9459, 93anbi12d 631 . . . 4 ((𝜑𝑐 ∈ (0[,)+∞)) → ((seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) ↔ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥))))))
9594rexbidva 3179 . . 3 (𝜑 → (∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) ↔ ∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥))))))
9695exbidv 1920 . 2 (𝜑 → (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) ↔ ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥))))))
9740, 96mpbird 257 1 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2103  wne 2942  wral 3063  wrex 3072  {crab 3438  cdif 3967  {csn 4648   class class class wbr 5169  cmpt 5252  cfv 6572  (class class class)co 7445  cr 11179  0cc0 11180  1c1 11181   + caddc 11183   · cmul 11185  +∞cpnf 11317   < clt 11320  cle 11321  cmin 11516   / cdiv 11943  cn 12289  cz 12635  +crp 13053  [,)cico 13405  cfl 13837  seqcseq 14048  csqrt 15278  abscabs 15279  cli 15526  𝑟 crli 15527  Σcsu 15730  Basecbs 17253  0gc0g 17494  ℤRHomczrh 21528  ℤ/nczn 21531  DChrcdchr 27285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-inf2 9706  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257  ax-pre-sup 11258  ax-addf 11259  ax-mulf 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-iin 5022  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-se 5655  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-isom 6581  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-of 7710  df-om 7900  df-1st 8026  df-2nd 8027  df-supp 8198  df-tpos 8263  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-2o 8519  df-oadd 8522  df-er 8759  df-ec 8761  df-qs 8765  df-map 8882  df-pm 8883  df-ixp 8952  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003  df-fsupp 9428  df-fi 9476  df-sup 9507  df-inf 9508  df-oi 9575  df-card 10004  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-div 11944  df-nn 12290  df-2 12352  df-3 12353  df-4 12354  df-5 12355  df-6 12356  df-7 12357  df-8 12358  df-9 12359  df-n0 12550  df-xnn0 12622  df-z 12636  df-dec 12755  df-uz 12900  df-q 13010  df-rp 13054  df-xneg 13171  df-xadd 13172  df-xmul 13173  df-ioo 13407  df-ioc 13408  df-ico 13409  df-icc 13410  df-fz 13564  df-fzo 13708  df-fl 13839  df-mod 13917  df-seq 14049  df-exp 14109  df-fac 14319  df-bc 14348  df-hash 14376  df-shft 15112  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-limsup 15513  df-clim 15530  df-rlim 15531  df-sum 15731  df-ef 16109  df-sin 16111  df-cos 16112  df-pi 16114  df-dvds 16297  df-gcd 16535  df-phi 16808  df-struct 17189  df-sets 17206  df-slot 17224  df-ndx 17236  df-base 17254  df-ress 17283  df-plusg 17319  df-mulr 17320  df-starv 17321  df-sca 17322  df-vsca 17323  df-ip 17324  df-tset 17325  df-ple 17326  df-ds 17328  df-unif 17329  df-hom 17330  df-cco 17331  df-rest 17477  df-topn 17478  df-0g 17496  df-gsum 17497  df-topgen 17498  df-pt 17499  df-prds 17502  df-xrs 17557  df-qtop 17562  df-imas 17563  df-qus 17564  df-xps 17565  df-mre 17639  df-mrc 17640  df-acs 17642  df-mgm 18673  df-sgrp 18752  df-mnd 18768  df-mhm 18813  df-submnd 18814  df-grp 18971  df-minusg 18972  df-sbg 18973  df-mulg 19103  df-subg 19158  df-nsg 19159  df-eqg 19160  df-ghm 19248  df-cntz 19352  df-cmn 19819  df-abl 19820  df-mgp 20157  df-rng 20175  df-ur 20204  df-ring 20257  df-cring 20258  df-oppr 20355  df-dvdsr 20378  df-unit 20379  df-invr 20409  df-rhm 20493  df-subrng 20567  df-subrg 20592  df-lmod 20877  df-lss 20948  df-lsp 20988  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-rsp 21237  df-2idl 21278  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-zring 21476  df-zrh 21532  df-zn 21535  df-top 22914  df-topon 22931  df-topsp 22953  df-bases 22967  df-cld 23041  df-ntr 23042  df-cls 23043  df-nei 23120  df-lp 23158  df-perf 23159  df-cn 23249  df-cnp 23250  df-haus 23337  df-tx 23584  df-hmeo 23777  df-fil 23868  df-fm 23960  df-flim 23961  df-flf 23962  df-xms 24344  df-ms 24345  df-tms 24346  df-cncf 24916  df-limc 25913  df-dv 25914  df-log 26607  df-cxp 26608  df-dchr 27286
This theorem is referenced by:  dchrisum0  27573
  Copyright terms: Public domain W3C validator