MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lema Structured version   Visualization version   GIF version

Theorem dchrisum0lema 27431
Description: Lemma for dchrisum0 27437. Apply dchrisum 27409 for the function 1 / √𝑦. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
dchrisum0lem1.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
Assertion
Ref Expression
dchrisum0lema (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))
Distinct variable groups:   𝑦,𝑚,𝑐,𝑡, 1   𝐹,𝑐,𝑡,𝑦   𝑎,𝑐,𝑚,𝑡,𝑦   𝑁,𝑐,𝑚,𝑡,𝑦   𝜑,𝑐,𝑚,𝑡   𝑊,𝑐,𝑡   𝑚,𝑍,𝑦   𝐷,𝑐,𝑚,𝑡,𝑦   𝐿,𝑎,𝑐,𝑚,𝑡,𝑦   𝑋,𝑎,𝑐,𝑚,𝑡,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐷(𝑎)   1 (𝑎)   𝐹(𝑎)   𝐺(𝑦,𝑡,𝑚,𝑎,𝑐)   𝑁(𝑎)   𝑊(𝑦,𝑚,𝑎)   𝑍(𝑡,𝑎,𝑐)

Proof of Theorem dchrisum0lema
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . . 3 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . . 3 (𝜑𝑁 ∈ ℕ)
4 rpvmasum2.g . . 3 𝐺 = (DChr‘𝑁)
5 rpvmasum2.d . . 3 𝐷 = (Base‘𝐺)
6 rpvmasum2.1 . . 3 1 = (0g𝐺)
7 rpvmasum2.w . . . . . 6 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
87ssrab3 4047 . . . . 5 𝑊 ⊆ (𝐷 ∖ { 1 })
9 dchrisum0.b . . . . 5 (𝜑𝑋𝑊)
108, 9sselid 3946 . . . 4 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
1110eldifad 3928 . . 3 (𝜑𝑋𝐷)
12 eldifsni 4756 . . . 4 (𝑋 ∈ (𝐷 ∖ { 1 }) → 𝑋1 )
1310, 12syl 17 . . 3 (𝜑𝑋1 )
14 fveq2 6860 . . . 4 (𝑛 = 𝑥 → (√‘𝑛) = (√‘𝑥))
1514oveq2d 7405 . . 3 (𝑛 = 𝑥 → (1 / (√‘𝑛)) = (1 / (√‘𝑥)))
16 1nn 12198 . . . 4 1 ∈ ℕ
1716a1i 11 . . 3 (𝜑 → 1 ∈ ℕ)
18 rpsqrtcl 15236 . . . . 5 (𝑛 ∈ ℝ+ → (√‘𝑛) ∈ ℝ+)
1918adantl 481 . . . 4 ((𝜑𝑛 ∈ ℝ+) → (√‘𝑛) ∈ ℝ+)
2019rprecred 13012 . . 3 ((𝜑𝑛 ∈ ℝ+) → (1 / (√‘𝑛)) ∈ ℝ)
21 simp3r 1203 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → 𝑛𝑥)
22 simp2l 1200 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → 𝑛 ∈ ℝ+)
2322rprege0d 13008 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛))
24 simp2r 1201 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → 𝑥 ∈ ℝ+)
2524rprege0d 13008 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
26 sqrtle 15232 . . . . . 6 (((𝑛 ∈ ℝ ∧ 0 ≤ 𝑛) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (𝑛𝑥 ↔ (√‘𝑛) ≤ (√‘𝑥)))
2723, 25, 26syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (𝑛𝑥 ↔ (√‘𝑛) ≤ (√‘𝑥)))
2821, 27mpbid 232 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (√‘𝑛) ≤ (√‘𝑥))
2922rpsqrtcld 15384 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (√‘𝑛) ∈ ℝ+)
3024rpsqrtcld 15384 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (√‘𝑥) ∈ ℝ+)
3129, 30lerecd 13020 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → ((√‘𝑛) ≤ (√‘𝑥) ↔ (1 / (√‘𝑥)) ≤ (1 / (√‘𝑛))))
3228, 31mpbid 232 . . 3 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (1 / (√‘𝑥)) ≤ (1 / (√‘𝑛)))
33 sqrtlim 26889 . . . 4 (𝑛 ∈ ℝ+ ↦ (1 / (√‘𝑛))) ⇝𝑟 0
3433a1i 11 . . 3 (𝜑 → (𝑛 ∈ ℝ+ ↦ (1 / (√‘𝑛))) ⇝𝑟 0)
35 2fveq3 6865 . . . . 5 (𝑎 = 𝑛 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑛)))
36 fveq2 6860 . . . . . 6 (𝑎 = 𝑛 → (√‘𝑎) = (√‘𝑛))
3736oveq2d 7405 . . . . 5 (𝑎 = 𝑛 → (1 / (√‘𝑎)) = (1 / (√‘𝑛)))
3835, 37oveq12d 7407 . . . 4 (𝑎 = 𝑛 → ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))) = ((𝑋‘(𝐿𝑛)) · (1 / (√‘𝑛))))
3938cbvmptv 5213 . . 3 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · (1 / (√‘𝑛))))
401, 2, 3, 4, 5, 6, 11, 13, 15, 17, 20, 32, 34, 39dchrisum 27409 . 2 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))
4111adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑋𝐷)
42 nnz 12556 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
4342adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
444, 1, 5, 2, 41, 43dchrzrhcl 27162 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
45 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
4645nnrpd 12999 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
4746rpsqrtcld 15384 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (√‘𝑛) ∈ ℝ+)
4847rpcnd 13003 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (√‘𝑛) ∈ ℂ)
4947rpne0d 13006 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (√‘𝑛) ≠ 0)
5044, 48, 49divrecd 11967 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑋‘(𝐿𝑛)) / (√‘𝑛)) = ((𝑋‘(𝐿𝑛)) · (1 / (√‘𝑛))))
5150mpteq2dva 5202 . . . . . . . . 9 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) / (√‘𝑛))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · (1 / (√‘𝑛)))))
52 dchrisum0lem1.f . . . . . . . . . 10 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
5335, 36oveq12d 7407 . . . . . . . . . . 11 (𝑎 = 𝑛 → ((𝑋‘(𝐿𝑎)) / (√‘𝑎)) = ((𝑋‘(𝐿𝑛)) / (√‘𝑛)))
5453cbvmptv 5213 . . . . . . . . . 10 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) / (√‘𝑛)))
5552, 54eqtri 2753 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) / (√‘𝑛)))
5651, 55, 393eqtr4g 2790 . . . . . . . 8 (𝜑𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))
5756seqeq3d 13980 . . . . . . 7 (𝜑 → seq1( + , 𝐹) = seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))))
5857breq1d 5119 . . . . . 6 (𝜑 → (seq1( + , 𝐹) ⇝ 𝑡 ↔ seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡))
5958adantr 480 . . . . 5 ((𝜑𝑐 ∈ (0[,)+∞)) → (seq1( + , 𝐹) ⇝ 𝑡 ↔ seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡))
60 2fveq3 6865 . . . . . . . . 9 (𝑦 = 𝑥 → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
6160fvoveq1d 7411 . . . . . . . 8 (𝑦 = 𝑥 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)))
62 fveq2 6860 . . . . . . . . 9 (𝑦 = 𝑥 → (√‘𝑦) = (√‘𝑥))
6362oveq2d 7405 . . . . . . . 8 (𝑦 = 𝑥 → (𝑐 / (√‘𝑦)) = (𝑐 / (√‘𝑥)))
6461, 63breq12d 5122 . . . . . . 7 (𝑦 = 𝑥 → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥))))
6564cbvralvw 3216 . . . . . 6 (∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥)))
6656ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))
6766seqeq3d 13980 . . . . . . . . . 10 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → seq1( + , 𝐹) = seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))))
6867fveq1d 6862 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (seq1( + , 𝐹)‘(⌊‘𝑥)) = (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)))
6968fvoveq1d 7411 . . . . . . . 8 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) = (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)))
70 elrege0 13421 . . . . . . . . . . . 12 (𝑐 ∈ (0[,)+∞) ↔ (𝑐 ∈ ℝ ∧ 0 ≤ 𝑐))
7170simplbi 497 . . . . . . . . . . 11 (𝑐 ∈ (0[,)+∞) → 𝑐 ∈ ℝ)
7271ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑐 ∈ ℝ)
7372recnd 11208 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑐 ∈ ℂ)
74 1re 11180 . . . . . . . . . . . . . . 15 1 ∈ ℝ
75 elicopnf 13412 . . . . . . . . . . . . . . 15 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
7674, 75ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
7776simplbi 497 . . . . . . . . . . . . 13 (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ)
7877adantl 481 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ)
79 0red 11183 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0 ∈ ℝ)
80 1red 11181 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 1 ∈ ℝ)
81 0lt1 11706 . . . . . . . . . . . . . 14 0 < 1
8281a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0 < 1)
8376simprbi 496 . . . . . . . . . . . . . 14 (𝑥 ∈ (1[,)+∞) → 1 ≤ 𝑥)
8483adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
8579, 80, 78, 82, 84ltletrd 11340 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0 < 𝑥)
8678, 85elrpd 12998 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ+)
8786rpsqrtcld 15384 . . . . . . . . . 10 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (√‘𝑥) ∈ ℝ+)
8887rpcnd 13003 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (√‘𝑥) ∈ ℂ)
8987rpne0d 13006 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (√‘𝑥) ≠ 0)
9073, 88, 89divrecd 11967 . . . . . . . 8 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (𝑐 / (√‘𝑥)) = (𝑐 · (1 / (√‘𝑥))))
9169, 90breq12d 5122 . . . . . . 7 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥)) ↔ (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))
9291ralbidva 3155 . . . . . 6 ((𝜑𝑐 ∈ (0[,)+∞)) → (∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥)) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))
9365, 92bitrid 283 . . . . 5 ((𝜑𝑐 ∈ (0[,)+∞)) → (∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))
9459, 93anbi12d 632 . . . 4 ((𝜑𝑐 ∈ (0[,)+∞)) → ((seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) ↔ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥))))))
9594rexbidva 3156 . . 3 (𝜑 → (∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) ↔ ∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥))))))
9695exbidv 1921 . 2 (𝜑 → (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) ↔ ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥))))))
9740, 96mpbird 257 1 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  cdif 3913  {csn 4591   class class class wbr 5109  cmpt 5190  cfv 6513  (class class class)co 7389  cr 11073  0cc0 11074  1c1 11075   + caddc 11077   · cmul 11079  +∞cpnf 11211   < clt 11214  cle 11215  cmin 11411   / cdiv 11841  cn 12187  cz 12535  +crp 12957  [,)cico 13314  cfl 13758  seqcseq 13972  csqrt 15205  abscabs 15206  cli 15456  𝑟 crli 15457  Σcsu 15658  Basecbs 17185  0gc0g 17408  ℤRHomczrh 21415  ℤ/nczn 21418  DChrcdchr 27149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152  ax-addf 11153  ax-mulf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-oadd 8440  df-er 8673  df-ec 8675  df-qs 8679  df-map 8803  df-pm 8804  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fsupp 9319  df-fi 9368  df-sup 9399  df-inf 9400  df-oi 9469  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-xnn0 12522  df-z 12536  df-dec 12656  df-uz 12800  df-q 12914  df-rp 12958  df-xneg 13078  df-xadd 13079  df-xmul 13080  df-ioo 13316  df-ioc 13317  df-ico 13318  df-icc 13319  df-fz 13475  df-fzo 13622  df-fl 13760  df-mod 13838  df-seq 13973  df-exp 14033  df-fac 14245  df-bc 14274  df-hash 14302  df-shft 15039  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-limsup 15443  df-clim 15460  df-rlim 15461  df-sum 15659  df-ef 16039  df-sin 16041  df-cos 16042  df-pi 16044  df-dvds 16229  df-gcd 16471  df-phi 16742  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17391  df-topn 17392  df-0g 17410  df-gsum 17411  df-topgen 17412  df-pt 17413  df-prds 17416  df-xrs 17471  df-qtop 17476  df-imas 17477  df-qus 17478  df-xps 17479  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-nsg 19062  df-eqg 19063  df-ghm 19151  df-cntz 19255  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-cring 20151  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-rhm 20387  df-subrng 20461  df-subrg 20485  df-lmod 20774  df-lss 20844  df-lsp 20884  df-sra 21086  df-rgmod 21087  df-lidl 21124  df-rsp 21125  df-2idl 21166  df-psmet 21262  df-xmet 21263  df-met 21264  df-bl 21265  df-mopn 21266  df-fbas 21267  df-fg 21268  df-cnfld 21271  df-zring 21363  df-zrh 21419  df-zn 21422  df-top 22787  df-topon 22804  df-topsp 22826  df-bases 22839  df-cld 22912  df-ntr 22913  df-cls 22914  df-nei 22991  df-lp 23029  df-perf 23030  df-cn 23120  df-cnp 23121  df-haus 23208  df-tx 23455  df-hmeo 23648  df-fil 23739  df-fm 23831  df-flim 23832  df-flf 23833  df-xms 24214  df-ms 24215  df-tms 24216  df-cncf 24777  df-limc 25773  df-dv 25774  df-log 26471  df-cxp 26472  df-dchr 27150
This theorem is referenced by:  dchrisum0  27437
  Copyright terms: Public domain W3C validator