![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > binomcxplemcvg | Structured version Visualization version GIF version |
Description: Lemma for binomcxp 44326. The sum in binomcxplemnn0 44318 and its derivative (see the next theorem, binomcxplemdvsum 44324) converge, as long as their base 𝐽 is within the disk of convergence. Part of remark "This convergence allows us to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
Ref | Expression |
---|---|
binomcxp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
binomcxp.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
binomcxp.lt | ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) |
binomcxp.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
binomcxplem.f | ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) |
binomcxplem.s | ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) |
binomcxplem.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
binomcxplem.e | ⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) |
binomcxplem.d | ⊢ 𝐷 = (◡abs “ (0[,)𝑅)) |
Ref | Expression |
---|---|
binomcxplemcvg | ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → (seq0( + , (𝑆‘𝐽)) ∈ dom ⇝ ∧ seq1( + , (𝐸‘𝐽)) ∈ dom ⇝ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | binomcxplem.s | . . 3 ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) | |
2 | binomcxp.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐶 ∈ ℂ) |
4 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0) | |
5 | 3, 4 | bcccl 44308 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ ℂ) |
6 | binomcxplem.f | . . . . 5 ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) | |
7 | 5, 6 | fmptd 7148 | . . . 4 ⊢ (𝜑 → 𝐹:ℕ0⟶ℂ) |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → 𝐹:ℕ0⟶ℂ) |
9 | binomcxplem.r | . . 3 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
10 | binomcxplem.d | . . . . . . 7 ⊢ 𝐷 = (◡abs “ (0[,)𝑅)) | |
11 | 10 | eleq2i 2836 | . . . . . 6 ⊢ (𝐽 ∈ 𝐷 ↔ 𝐽 ∈ (◡abs “ (0[,)𝑅))) |
12 | absf 15386 | . . . . . . 7 ⊢ abs:ℂ⟶ℝ | |
13 | ffn 6747 | . . . . . . 7 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
14 | elpreima 7091 | . . . . . . 7 ⊢ (abs Fn ℂ → (𝐽 ∈ (◡abs “ (0[,)𝑅)) ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅)))) | |
15 | 12, 13, 14 | mp2b 10 | . . . . . 6 ⊢ (𝐽 ∈ (◡abs “ (0[,)𝑅)) ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅))) |
16 | 11, 15 | bitri 275 | . . . . 5 ⊢ (𝐽 ∈ 𝐷 ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅))) |
17 | 16 | simplbi 497 | . . . 4 ⊢ (𝐽 ∈ 𝐷 → 𝐽 ∈ ℂ) |
18 | 17 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → 𝐽 ∈ ℂ) |
19 | 16 | simprbi 496 | . . . . 5 ⊢ (𝐽 ∈ 𝐷 → (abs‘𝐽) ∈ (0[,)𝑅)) |
20 | 0re 11292 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
21 | ssrab2 4103 | . . . . . . . . . 10 ⊢ {𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ } ⊆ ℝ | |
22 | ressxr 11334 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℝ* | |
23 | 21, 22 | sstri 4018 | . . . . . . . . 9 ⊢ {𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ } ⊆ ℝ* |
24 | supxrcl 13377 | . . . . . . . . 9 ⊢ ({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ } ⊆ ℝ* → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*) | |
25 | 23, 24 | ax-mp 5 | . . . . . . . 8 ⊢ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ* |
26 | 9, 25 | eqeltri 2840 | . . . . . . 7 ⊢ 𝑅 ∈ ℝ* |
27 | elico2 13471 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝐽) ∈ (0[,)𝑅) ↔ ((abs‘𝐽) ∈ ℝ ∧ 0 ≤ (abs‘𝐽) ∧ (abs‘𝐽) < 𝑅))) | |
28 | 20, 26, 27 | mp2an 691 | . . . . . 6 ⊢ ((abs‘𝐽) ∈ (0[,)𝑅) ↔ ((abs‘𝐽) ∈ ℝ ∧ 0 ≤ (abs‘𝐽) ∧ (abs‘𝐽) < 𝑅)) |
29 | 28 | simp3bi 1147 | . . . . 5 ⊢ ((abs‘𝐽) ∈ (0[,)𝑅) → (abs‘𝐽) < 𝑅) |
30 | 19, 29 | syl 17 | . . . 4 ⊢ (𝐽 ∈ 𝐷 → (abs‘𝐽) < 𝑅) |
31 | 30 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → (abs‘𝐽) < 𝑅) |
32 | 1, 8, 9, 18, 31 | radcnvlt2 26480 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → seq0( + , (𝑆‘𝐽)) ∈ dom ⇝ ) |
33 | binomcxplem.e | . . . . . . 7 ⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) | |
34 | 33 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 ∈ ℂ) → 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1)))))) |
35 | simplr 768 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → 𝑏 = 𝐽) | |
36 | 35 | oveq1d 7463 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → (𝑏↑(𝑘 − 1)) = (𝐽↑(𝑘 − 1))) |
37 | 36 | oveq2d 7464 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))) = ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))) |
38 | 37 | mpteq2dva 5266 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1))))) |
39 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 ∈ ℂ) → 𝐽 ∈ ℂ) | |
40 | nnex 12299 | . . . . . . . 8 ⊢ ℕ ∈ V | |
41 | 40 | mptex 7260 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))) ∈ V |
42 | 41 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 ∈ ℂ) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))) ∈ V) |
43 | 34, 38, 39, 42 | fvmptd 7036 | . . . . 5 ⊢ ((𝜑 ∧ 𝐽 ∈ ℂ) → (𝐸‘𝐽) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1))))) |
44 | 17, 43 | sylan2 592 | . . . 4 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → (𝐸‘𝐽) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1))))) |
45 | 44 | seqeq3d 14060 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → seq1( + , (𝐸‘𝐽)) = seq1( + , (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))))) |
46 | eqid 2740 | . . . 4 ⊢ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))) | |
47 | 1, 9, 46, 8, 18, 31 | dvradcnv2 44316 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → seq1( + , (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1))))) ∈ dom ⇝ ) |
48 | 45, 47 | eqeltrd 2844 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → seq1( + , (𝐸‘𝐽)) ∈ dom ⇝ ) |
49 | 32, 48 | jca 511 | 1 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → (seq0( + , (𝑆‘𝐽)) ∈ dom ⇝ ∧ seq1( + , (𝐸‘𝐽)) ∈ dom ⇝ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 ↦ cmpt 5249 ◡ccnv 5699 dom cdm 5700 “ cima 5703 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 supcsup 9509 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 − cmin 11520 ℕcn 12293 ℕ0cn0 12553 ℝ+crp 13057 [,)cico 13409 seqcseq 14052 ↑cexp 14112 abscabs 15283 ⇝ cli 15530 C𝑐cbcc 44305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-fac 14323 df-hash 14380 df-shft 15116 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-prod 15952 df-fallfac 16055 df-bcc 44306 |
This theorem is referenced by: binomcxplemnotnn0 44325 |
Copyright terms: Public domain | W3C validator |