Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemcvg Structured version   Visualization version   GIF version

Theorem binomcxplemcvg 42211
Description: Lemma for binomcxp 42214. The sum in binomcxplemnn0 42206 and its derivative (see the next theorem, binomcxplemdvsum 42212) converge, as long as their base 𝐽 is within the disk of convergence. Part of remark "This convergence allows us to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
binomcxplem.f 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
binomcxplem.s 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
binomcxplem.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
binomcxplem.e 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
binomcxplem.d 𝐷 = (abs “ (0[,)𝑅))
Assertion
Ref Expression
binomcxplemcvg ((𝜑𝐽𝐷) → (seq0( + , (𝑆𝐽)) ∈ dom ⇝ ∧ seq1( + , (𝐸𝐽)) ∈ dom ⇝ ))
Distinct variable groups:   𝑘,𝑏,𝜑   𝐹,𝑏,𝑘   𝐽,𝑏,𝑘   𝑟,𝑏,𝐽   𝜑,𝑗   𝑆,𝑟
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑗,𝑘,𝑟,𝑏)   𝐵(𝑗,𝑘,𝑟,𝑏)   𝐶(𝑗,𝑘,𝑟,𝑏)   𝐷(𝑗,𝑘,𝑟,𝑏)   𝑅(𝑗,𝑘,𝑟,𝑏)   𝑆(𝑗,𝑘,𝑏)   𝐸(𝑗,𝑘,𝑟,𝑏)   𝐹(𝑗,𝑟)   𝐽(𝑗)

Proof of Theorem binomcxplemcvg
StepHypRef Expression
1 binomcxplem.s . . 3 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
2 binomcxp.c . . . . . . 7 (𝜑𝐶 ∈ ℂ)
32adantr 481 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 𝐶 ∈ ℂ)
4 simpr 485 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
53, 4bcccl 42196 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ ℂ)
6 binomcxplem.f . . . . 5 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
75, 6fmptd 7027 . . . 4 (𝜑𝐹:ℕ0⟶ℂ)
87adantr 481 . . 3 ((𝜑𝐽𝐷) → 𝐹:ℕ0⟶ℂ)
9 binomcxplem.r . . 3 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
10 binomcxplem.d . . . . . . 7 𝐷 = (abs “ (0[,)𝑅))
1110eleq2i 2828 . . . . . 6 (𝐽𝐷𝐽 ∈ (abs “ (0[,)𝑅)))
12 absf 15125 . . . . . . 7 abs:ℂ⟶ℝ
13 ffn 6637 . . . . . . 7 (abs:ℂ⟶ℝ → abs Fn ℂ)
14 elpreima 6974 . . . . . . 7 (abs Fn ℂ → (𝐽 ∈ (abs “ (0[,)𝑅)) ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅))))
1512, 13, 14mp2b 10 . . . . . 6 (𝐽 ∈ (abs “ (0[,)𝑅)) ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅)))
1611, 15bitri 274 . . . . 5 (𝐽𝐷 ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅)))
1716simplbi 498 . . . 4 (𝐽𝐷𝐽 ∈ ℂ)
1817adantl 482 . . 3 ((𝜑𝐽𝐷) → 𝐽 ∈ ℂ)
1916simprbi 497 . . . . 5 (𝐽𝐷 → (abs‘𝐽) ∈ (0[,)𝑅))
20 0re 11056 . . . . . . 7 0 ∈ ℝ
21 ssrab2 4023 . . . . . . . . . 10 {𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ
22 ressxr 11098 . . . . . . . . . 10 ℝ ⊆ ℝ*
2321, 22sstri 3939 . . . . . . . . 9 {𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ*
24 supxrcl 13128 . . . . . . . . 9 ({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ* → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
2523, 24ax-mp 5 . . . . . . . 8 sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*
269, 25eqeltri 2833 . . . . . . 7 𝑅 ∈ ℝ*
27 elico2 13222 . . . . . . 7 ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝐽) ∈ (0[,)𝑅) ↔ ((abs‘𝐽) ∈ ℝ ∧ 0 ≤ (abs‘𝐽) ∧ (abs‘𝐽) < 𝑅)))
2820, 26, 27mp2an 689 . . . . . 6 ((abs‘𝐽) ∈ (0[,)𝑅) ↔ ((abs‘𝐽) ∈ ℝ ∧ 0 ≤ (abs‘𝐽) ∧ (abs‘𝐽) < 𝑅))
2928simp3bi 1146 . . . . 5 ((abs‘𝐽) ∈ (0[,)𝑅) → (abs‘𝐽) < 𝑅)
3019, 29syl 17 . . . 4 (𝐽𝐷 → (abs‘𝐽) < 𝑅)
3130adantl 482 . . 3 ((𝜑𝐽𝐷) → (abs‘𝐽) < 𝑅)
321, 8, 9, 18, 31radcnvlt2 25658 . 2 ((𝜑𝐽𝐷) → seq0( + , (𝑆𝐽)) ∈ dom ⇝ )
33 binomcxplem.e . . . . . . 7 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
3433a1i 11 . . . . . 6 ((𝜑𝐽 ∈ ℂ) → 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1))))))
35 simplr 766 . . . . . . . . 9 ((((𝜑𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → 𝑏 = 𝐽)
3635oveq1d 7331 . . . . . . . 8 ((((𝜑𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → (𝑏↑(𝑘 − 1)) = (𝐽↑(𝑘 − 1)))
3736oveq2d 7332 . . . . . . 7 ((((𝜑𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1))) = ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1))))
3837mpteq2dva 5186 . . . . . 6 (((𝜑𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))))
39 simpr 485 . . . . . 6 ((𝜑𝐽 ∈ ℂ) → 𝐽 ∈ ℂ)
40 nnex 12058 . . . . . . . 8 ℕ ∈ V
4140mptex 7138 . . . . . . 7 (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))) ∈ V
4241a1i 11 . . . . . 6 ((𝜑𝐽 ∈ ℂ) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))) ∈ V)
4334, 38, 39, 42fvmptd 6921 . . . . 5 ((𝜑𝐽 ∈ ℂ) → (𝐸𝐽) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))))
4417, 43sylan2 593 . . . 4 ((𝜑𝐽𝐷) → (𝐸𝐽) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))))
4544seqeq3d 13808 . . 3 ((𝜑𝐽𝐷) → seq1( + , (𝐸𝐽)) = seq1( + , (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1))))))
46 eqid 2736 . . . 4 (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1))))
471, 9, 46, 8, 18, 31dvradcnv2 42204 . . 3 ((𝜑𝐽𝐷) → seq1( + , (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1))))) ∈ dom ⇝ )
4845, 47eqeltrd 2837 . 2 ((𝜑𝐽𝐷) → seq1( + , (𝐸𝐽)) ∈ dom ⇝ )
4932, 48jca 512 1 ((𝜑𝐽𝐷) → (seq0( + , (𝑆𝐽)) ∈ dom ⇝ ∧ seq1( + , (𝐸𝐽)) ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  {crab 3403  Vcvv 3440  wss 3896   class class class wbr 5086  cmpt 5169  ccnv 5606  dom cdm 5607  cima 5610   Fn wfn 6460  wf 6461  cfv 6465  (class class class)co 7316  supcsup 9275  cc 10948  cr 10949  0cc0 10950  1c1 10951   + caddc 10953   · cmul 10955  *cxr 11087   < clt 11088  cle 11089  cmin 11284  cn 12052  0cn0 12312  +crp 12809  [,)cico 13160  seqcseq 13800  cexp 13861  abscabs 15021  cli 15269  C𝑐cbcc 42193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-inf2 9476  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027  ax-pre-sup 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-se 5563  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-isom 6474  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-1st 7877  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-er 8547  df-pm 8667  df-en 8783  df-dom 8784  df-sdom 8785  df-fin 8786  df-sup 9277  df-inf 9278  df-oi 9345  df-card 9774  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-div 11712  df-nn 12053  df-2 12115  df-3 12116  df-n0 12313  df-z 12399  df-uz 12662  df-rp 12810  df-ico 13164  df-icc 13165  df-fz 13319  df-fzo 13462  df-fl 13591  df-seq 13801  df-exp 13862  df-fac 14067  df-hash 14124  df-shft 14854  df-cj 14886  df-re 14887  df-im 14888  df-sqrt 15022  df-abs 15023  df-limsup 15256  df-clim 15273  df-rlim 15274  df-sum 15474  df-prod 15692  df-fallfac 15793  df-bcc 42194
This theorem is referenced by:  binomcxplemnotnn0  42213
  Copyright terms: Public domain W3C validator