| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > binomcxplemcvg | Structured version Visualization version GIF version | ||
| Description: Lemma for binomcxp 44346. The sum in binomcxplemnn0 44338 and its derivative (see the next theorem, binomcxplemdvsum 44344) converge, as long as their base 𝐽 is within the disk of convergence. Part of remark "This convergence allows us to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| Ref | Expression |
|---|---|
| binomcxp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| binomcxp.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| binomcxp.lt | ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) |
| binomcxp.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| binomcxplem.f | ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) |
| binomcxplem.s | ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) |
| binomcxplem.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
| binomcxplem.e | ⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) |
| binomcxplem.d | ⊢ 𝐷 = (◡abs “ (0[,)𝑅)) |
| Ref | Expression |
|---|---|
| binomcxplemcvg | ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → (seq0( + , (𝑆‘𝐽)) ∈ dom ⇝ ∧ seq1( + , (𝐸‘𝐽)) ∈ dom ⇝ )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | binomcxplem.s | . . 3 ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) | |
| 2 | binomcxp.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐶 ∈ ℂ) |
| 4 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0) | |
| 5 | 3, 4 | bcccl 44328 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ ℂ) |
| 6 | binomcxplem.f | . . . . 5 ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) | |
| 7 | 5, 6 | fmptd 7086 | . . . 4 ⊢ (𝜑 → 𝐹:ℕ0⟶ℂ) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → 𝐹:ℕ0⟶ℂ) |
| 9 | binomcxplem.r | . . 3 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
| 10 | binomcxplem.d | . . . . . . 7 ⊢ 𝐷 = (◡abs “ (0[,)𝑅)) | |
| 11 | 10 | eleq2i 2820 | . . . . . 6 ⊢ (𝐽 ∈ 𝐷 ↔ 𝐽 ∈ (◡abs “ (0[,)𝑅))) |
| 12 | absf 15304 | . . . . . . 7 ⊢ abs:ℂ⟶ℝ | |
| 13 | ffn 6688 | . . . . . . 7 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
| 14 | elpreima 7030 | . . . . . . 7 ⊢ (abs Fn ℂ → (𝐽 ∈ (◡abs “ (0[,)𝑅)) ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅)))) | |
| 15 | 12, 13, 14 | mp2b 10 | . . . . . 6 ⊢ (𝐽 ∈ (◡abs “ (0[,)𝑅)) ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅))) |
| 16 | 11, 15 | bitri 275 | . . . . 5 ⊢ (𝐽 ∈ 𝐷 ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅))) |
| 17 | 16 | simplbi 497 | . . . 4 ⊢ (𝐽 ∈ 𝐷 → 𝐽 ∈ ℂ) |
| 18 | 17 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → 𝐽 ∈ ℂ) |
| 19 | 16 | simprbi 496 | . . . . 5 ⊢ (𝐽 ∈ 𝐷 → (abs‘𝐽) ∈ (0[,)𝑅)) |
| 20 | 0re 11176 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 21 | ssrab2 4043 | . . . . . . . . . 10 ⊢ {𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ } ⊆ ℝ | |
| 22 | ressxr 11218 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℝ* | |
| 23 | 21, 22 | sstri 3956 | . . . . . . . . 9 ⊢ {𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ } ⊆ ℝ* |
| 24 | supxrcl 13275 | . . . . . . . . 9 ⊢ ({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ } ⊆ ℝ* → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*) | |
| 25 | 23, 24 | ax-mp 5 | . . . . . . . 8 ⊢ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ* |
| 26 | 9, 25 | eqeltri 2824 | . . . . . . 7 ⊢ 𝑅 ∈ ℝ* |
| 27 | elico2 13371 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝐽) ∈ (0[,)𝑅) ↔ ((abs‘𝐽) ∈ ℝ ∧ 0 ≤ (abs‘𝐽) ∧ (abs‘𝐽) < 𝑅))) | |
| 28 | 20, 26, 27 | mp2an 692 | . . . . . 6 ⊢ ((abs‘𝐽) ∈ (0[,)𝑅) ↔ ((abs‘𝐽) ∈ ℝ ∧ 0 ≤ (abs‘𝐽) ∧ (abs‘𝐽) < 𝑅)) |
| 29 | 28 | simp3bi 1147 | . . . . 5 ⊢ ((abs‘𝐽) ∈ (0[,)𝑅) → (abs‘𝐽) < 𝑅) |
| 30 | 19, 29 | syl 17 | . . . 4 ⊢ (𝐽 ∈ 𝐷 → (abs‘𝐽) < 𝑅) |
| 31 | 30 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → (abs‘𝐽) < 𝑅) |
| 32 | 1, 8, 9, 18, 31 | radcnvlt2 26328 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → seq0( + , (𝑆‘𝐽)) ∈ dom ⇝ ) |
| 33 | binomcxplem.e | . . . . . . 7 ⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) | |
| 34 | 33 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 ∈ ℂ) → 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1)))))) |
| 35 | simplr 768 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → 𝑏 = 𝐽) | |
| 36 | 35 | oveq1d 7402 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → (𝑏↑(𝑘 − 1)) = (𝐽↑(𝑘 − 1))) |
| 37 | 36 | oveq2d 7403 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))) = ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))) |
| 38 | 37 | mpteq2dva 5200 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1))))) |
| 39 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 ∈ ℂ) → 𝐽 ∈ ℂ) | |
| 40 | nnex 12192 | . . . . . . . 8 ⊢ ℕ ∈ V | |
| 41 | 40 | mptex 7197 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))) ∈ V |
| 42 | 41 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 ∈ ℂ) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))) ∈ V) |
| 43 | 34, 38, 39, 42 | fvmptd 6975 | . . . . 5 ⊢ ((𝜑 ∧ 𝐽 ∈ ℂ) → (𝐸‘𝐽) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1))))) |
| 44 | 17, 43 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → (𝐸‘𝐽) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1))))) |
| 45 | 44 | seqeq3d 13974 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → seq1( + , (𝐸‘𝐽)) = seq1( + , (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))))) |
| 46 | eqid 2729 | . . . 4 ⊢ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))) | |
| 47 | 1, 9, 46, 8, 18, 31 | dvradcnv2 44336 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → seq1( + , (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1))))) ∈ dom ⇝ ) |
| 48 | 45, 47 | eqeltrd 2828 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → seq1( + , (𝐸‘𝐽)) ∈ dom ⇝ ) |
| 49 | 32, 48 | jca 511 | 1 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → (seq0( + , (𝑆‘𝐽)) ∈ dom ⇝ ∧ seq1( + , (𝐸‘𝐽)) ∈ dom ⇝ )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 ⊆ wss 3914 class class class wbr 5107 ↦ cmpt 5188 ◡ccnv 5637 dom cdm 5638 “ cima 5641 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 supcsup 9391 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 − cmin 11405 ℕcn 12186 ℕ0cn0 12442 ℝ+crp 12951 [,)cico 13308 seqcseq 13966 ↑cexp 14026 abscabs 15200 ⇝ cli 15450 C𝑐cbcc 44325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-fac 14239 df-hash 14296 df-shft 15033 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-prod 15870 df-fallfac 15973 df-bcc 44326 |
| This theorem is referenced by: binomcxplemnotnn0 44345 |
| Copyright terms: Public domain | W3C validator |