Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemcvg Structured version   Visualization version   GIF version

Theorem binomcxplemcvg 44373
Description: Lemma for binomcxp 44376. The sum in binomcxplemnn0 44368 and its derivative (see the next theorem, binomcxplemdvsum 44374) converge, as long as their base 𝐽 is within the disk of convergence. Part of remark "This convergence allows us to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
binomcxplem.f 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
binomcxplem.s 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
binomcxplem.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
binomcxplem.e 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
binomcxplem.d 𝐷 = (abs “ (0[,)𝑅))
Assertion
Ref Expression
binomcxplemcvg ((𝜑𝐽𝐷) → (seq0( + , (𝑆𝐽)) ∈ dom ⇝ ∧ seq1( + , (𝐸𝐽)) ∈ dom ⇝ ))
Distinct variable groups:   𝑘,𝑏,𝜑   𝐹,𝑏,𝑘   𝐽,𝑏,𝑘   𝑟,𝑏,𝐽   𝜑,𝑗   𝑆,𝑟
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑗,𝑘,𝑟,𝑏)   𝐵(𝑗,𝑘,𝑟,𝑏)   𝐶(𝑗,𝑘,𝑟,𝑏)   𝐷(𝑗,𝑘,𝑟,𝑏)   𝑅(𝑗,𝑘,𝑟,𝑏)   𝑆(𝑗,𝑘,𝑏)   𝐸(𝑗,𝑘,𝑟,𝑏)   𝐹(𝑗,𝑟)   𝐽(𝑗)

Proof of Theorem binomcxplemcvg
StepHypRef Expression
1 binomcxplem.s . . 3 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
2 binomcxp.c . . . . . . 7 (𝜑𝐶 ∈ ℂ)
32adantr 480 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 𝐶 ∈ ℂ)
4 simpr 484 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
53, 4bcccl 44358 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ ℂ)
6 binomcxplem.f . . . . 5 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
75, 6fmptd 7134 . . . 4 (𝜑𝐹:ℕ0⟶ℂ)
87adantr 480 . . 3 ((𝜑𝐽𝐷) → 𝐹:ℕ0⟶ℂ)
9 binomcxplem.r . . 3 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
10 binomcxplem.d . . . . . . 7 𝐷 = (abs “ (0[,)𝑅))
1110eleq2i 2833 . . . . . 6 (𝐽𝐷𝐽 ∈ (abs “ (0[,)𝑅)))
12 absf 15376 . . . . . . 7 abs:ℂ⟶ℝ
13 ffn 6736 . . . . . . 7 (abs:ℂ⟶ℝ → abs Fn ℂ)
14 elpreima 7078 . . . . . . 7 (abs Fn ℂ → (𝐽 ∈ (abs “ (0[,)𝑅)) ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅))))
1512, 13, 14mp2b 10 . . . . . 6 (𝐽 ∈ (abs “ (0[,)𝑅)) ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅)))
1611, 15bitri 275 . . . . 5 (𝐽𝐷 ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅)))
1716simplbi 497 . . . 4 (𝐽𝐷𝐽 ∈ ℂ)
1817adantl 481 . . 3 ((𝜑𝐽𝐷) → 𝐽 ∈ ℂ)
1916simprbi 496 . . . . 5 (𝐽𝐷 → (abs‘𝐽) ∈ (0[,)𝑅))
20 0re 11263 . . . . . . 7 0 ∈ ℝ
21 ssrab2 4080 . . . . . . . . . 10 {𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ
22 ressxr 11305 . . . . . . . . . 10 ℝ ⊆ ℝ*
2321, 22sstri 3993 . . . . . . . . 9 {𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ*
24 supxrcl 13357 . . . . . . . . 9 ({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ* → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
2523, 24ax-mp 5 . . . . . . . 8 sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*
269, 25eqeltri 2837 . . . . . . 7 𝑅 ∈ ℝ*
27 elico2 13451 . . . . . . 7 ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝐽) ∈ (0[,)𝑅) ↔ ((abs‘𝐽) ∈ ℝ ∧ 0 ≤ (abs‘𝐽) ∧ (abs‘𝐽) < 𝑅)))
2820, 26, 27mp2an 692 . . . . . 6 ((abs‘𝐽) ∈ (0[,)𝑅) ↔ ((abs‘𝐽) ∈ ℝ ∧ 0 ≤ (abs‘𝐽) ∧ (abs‘𝐽) < 𝑅))
2928simp3bi 1148 . . . . 5 ((abs‘𝐽) ∈ (0[,)𝑅) → (abs‘𝐽) < 𝑅)
3019, 29syl 17 . . . 4 (𝐽𝐷 → (abs‘𝐽) < 𝑅)
3130adantl 481 . . 3 ((𝜑𝐽𝐷) → (abs‘𝐽) < 𝑅)
321, 8, 9, 18, 31radcnvlt2 26462 . 2 ((𝜑𝐽𝐷) → seq0( + , (𝑆𝐽)) ∈ dom ⇝ )
33 binomcxplem.e . . . . . . 7 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
3433a1i 11 . . . . . 6 ((𝜑𝐽 ∈ ℂ) → 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1))))))
35 simplr 769 . . . . . . . . 9 ((((𝜑𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → 𝑏 = 𝐽)
3635oveq1d 7446 . . . . . . . 8 ((((𝜑𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → (𝑏↑(𝑘 − 1)) = (𝐽↑(𝑘 − 1)))
3736oveq2d 7447 . . . . . . 7 ((((𝜑𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1))) = ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1))))
3837mpteq2dva 5242 . . . . . 6 (((𝜑𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))))
39 simpr 484 . . . . . 6 ((𝜑𝐽 ∈ ℂ) → 𝐽 ∈ ℂ)
40 nnex 12272 . . . . . . . 8 ℕ ∈ V
4140mptex 7243 . . . . . . 7 (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))) ∈ V
4241a1i 11 . . . . . 6 ((𝜑𝐽 ∈ ℂ) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))) ∈ V)
4334, 38, 39, 42fvmptd 7023 . . . . 5 ((𝜑𝐽 ∈ ℂ) → (𝐸𝐽) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))))
4417, 43sylan2 593 . . . 4 ((𝜑𝐽𝐷) → (𝐸𝐽) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))))
4544seqeq3d 14050 . . 3 ((𝜑𝐽𝐷) → seq1( + , (𝐸𝐽)) = seq1( + , (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1))))))
46 eqid 2737 . . . 4 (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1))))
471, 9, 46, 8, 18, 31dvradcnv2 44366 . . 3 ((𝜑𝐽𝐷) → seq1( + , (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1))))) ∈ dom ⇝ )
4845, 47eqeltrd 2841 . 2 ((𝜑𝐽𝐷) → seq1( + , (𝐸𝐽)) ∈ dom ⇝ )
4932, 48jca 511 1 ((𝜑𝐽𝐷) → (seq0( + , (𝑆𝐽)) ∈ dom ⇝ ∧ seq1( + , (𝐸𝐽)) ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  {crab 3436  Vcvv 3480  wss 3951   class class class wbr 5143  cmpt 5225  ccnv 5684  dom cdm 5685  cima 5688   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  supcsup 9480  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  *cxr 11294   < clt 11295  cle 11296  cmin 11492  cn 12266  0cn0 12526  +crp 13034  [,)cico 13389  seqcseq 14042  cexp 14102  abscabs 15273  cli 15520  C𝑐cbcc 44355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-fac 14313  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-prod 15940  df-fallfac 16043  df-bcc 44356
This theorem is referenced by:  binomcxplemnotnn0  44375
  Copyright terms: Public domain W3C validator