![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > binomcxplemcvg | Structured version Visualization version GIF version |
Description: Lemma for binomcxp 40248. The sum in binomcxplemnn0 40240 and its derivative (see the next theorem, binomcxplemdvsum 40246) converge, as long as their base 𝐽 is within the disk of convergence. Part of remark "This convergence allows us to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
Ref | Expression |
---|---|
binomcxp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
binomcxp.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
binomcxp.lt | ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) |
binomcxp.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
binomcxplem.f | ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) |
binomcxplem.s | ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) |
binomcxplem.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
binomcxplem.e | ⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) |
binomcxplem.d | ⊢ 𝐷 = (◡abs “ (0[,)𝑅)) |
Ref | Expression |
---|---|
binomcxplemcvg | ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → (seq0( + , (𝑆‘𝐽)) ∈ dom ⇝ ∧ seq1( + , (𝐸‘𝐽)) ∈ dom ⇝ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | binomcxplem.s | . . 3 ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) | |
2 | binomcxp.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
3 | 2 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐶 ∈ ℂ) |
4 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0) | |
5 | 3, 4 | bcccl 40230 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ ℂ) |
6 | binomcxplem.f | . . . . 5 ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) | |
7 | 5, 6 | fmptd 6748 | . . . 4 ⊢ (𝜑 → 𝐹:ℕ0⟶ℂ) |
8 | 7 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → 𝐹:ℕ0⟶ℂ) |
9 | binomcxplem.r | . . 3 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
10 | binomcxplem.d | . . . . . . 7 ⊢ 𝐷 = (◡abs “ (0[,)𝑅)) | |
11 | 10 | eleq2i 2876 | . . . . . 6 ⊢ (𝐽 ∈ 𝐷 ↔ 𝐽 ∈ (◡abs “ (0[,)𝑅))) |
12 | absf 14535 | . . . . . . 7 ⊢ abs:ℂ⟶ℝ | |
13 | ffn 6389 | . . . . . . 7 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
14 | elpreima 6700 | . . . . . . 7 ⊢ (abs Fn ℂ → (𝐽 ∈ (◡abs “ (0[,)𝑅)) ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅)))) | |
15 | 12, 13, 14 | mp2b 10 | . . . . . 6 ⊢ (𝐽 ∈ (◡abs “ (0[,)𝑅)) ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅))) |
16 | 11, 15 | bitri 276 | . . . . 5 ⊢ (𝐽 ∈ 𝐷 ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅))) |
17 | 16 | simplbi 498 | . . . 4 ⊢ (𝐽 ∈ 𝐷 → 𝐽 ∈ ℂ) |
18 | 17 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → 𝐽 ∈ ℂ) |
19 | 16 | simprbi 497 | . . . . 5 ⊢ (𝐽 ∈ 𝐷 → (abs‘𝐽) ∈ (0[,)𝑅)) |
20 | 0re 10496 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
21 | ssrab2 3983 | . . . . . . . . . 10 ⊢ {𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ } ⊆ ℝ | |
22 | ressxr 10538 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℝ* | |
23 | 21, 22 | sstri 3904 | . . . . . . . . 9 ⊢ {𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ } ⊆ ℝ* |
24 | supxrcl 12562 | . . . . . . . . 9 ⊢ ({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ } ⊆ ℝ* → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*) | |
25 | 23, 24 | ax-mp 5 | . . . . . . . 8 ⊢ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ* |
26 | 9, 25 | eqeltri 2881 | . . . . . . 7 ⊢ 𝑅 ∈ ℝ* |
27 | elico2 12654 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝐽) ∈ (0[,)𝑅) ↔ ((abs‘𝐽) ∈ ℝ ∧ 0 ≤ (abs‘𝐽) ∧ (abs‘𝐽) < 𝑅))) | |
28 | 20, 26, 27 | mp2an 688 | . . . . . 6 ⊢ ((abs‘𝐽) ∈ (0[,)𝑅) ↔ ((abs‘𝐽) ∈ ℝ ∧ 0 ≤ (abs‘𝐽) ∧ (abs‘𝐽) < 𝑅)) |
29 | 28 | simp3bi 1140 | . . . . 5 ⊢ ((abs‘𝐽) ∈ (0[,)𝑅) → (abs‘𝐽) < 𝑅) |
30 | 19, 29 | syl 17 | . . . 4 ⊢ (𝐽 ∈ 𝐷 → (abs‘𝐽) < 𝑅) |
31 | 30 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → (abs‘𝐽) < 𝑅) |
32 | 1, 8, 9, 18, 31 | radcnvlt2 24694 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → seq0( + , (𝑆‘𝐽)) ∈ dom ⇝ ) |
33 | binomcxplem.e | . . . . . . 7 ⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) | |
34 | 33 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 ∈ ℂ) → 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1)))))) |
35 | simplr 765 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → 𝑏 = 𝐽) | |
36 | 35 | oveq1d 7038 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → (𝑏↑(𝑘 − 1)) = (𝐽↑(𝑘 − 1))) |
37 | 36 | oveq2d 7039 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))) = ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))) |
38 | 37 | mpteq2dva 5062 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1))))) |
39 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 ∈ ℂ) → 𝐽 ∈ ℂ) | |
40 | nnex 11498 | . . . . . . . 8 ⊢ ℕ ∈ V | |
41 | 40 | mptex 6859 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))) ∈ V |
42 | 41 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 ∈ ℂ) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))) ∈ V) |
43 | 34, 38, 39, 42 | fvmptd 6648 | . . . . 5 ⊢ ((𝜑 ∧ 𝐽 ∈ ℂ) → (𝐸‘𝐽) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1))))) |
44 | 17, 43 | sylan2 592 | . . . 4 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → (𝐸‘𝐽) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1))))) |
45 | 44 | seqeq3d 13231 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → seq1( + , (𝐸‘𝐽)) = seq1( + , (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))))) |
46 | eqid 2797 | . . . 4 ⊢ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))) | |
47 | 1, 9, 46, 8, 18, 31 | dvradcnv2 40238 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → seq1( + , (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1))))) ∈ dom ⇝ ) |
48 | 45, 47 | eqeltrd 2885 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → seq1( + , (𝐸‘𝐽)) ∈ dom ⇝ ) |
49 | 32, 48 | jca 512 | 1 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → (seq0( + , (𝑆‘𝐽)) ∈ dom ⇝ ∧ seq1( + , (𝐸‘𝐽)) ∈ dom ⇝ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 {crab 3111 Vcvv 3440 ⊆ wss 3865 class class class wbr 4968 ↦ cmpt 5047 ◡ccnv 5449 dom cdm 5450 “ cima 5453 Fn wfn 6227 ⟶wf 6228 ‘cfv 6232 (class class class)co 7023 supcsup 8757 ℂcc 10388 ℝcr 10389 0cc0 10390 1c1 10391 + caddc 10393 · cmul 10395 ℝ*cxr 10527 < clt 10528 ≤ cle 10529 − cmin 10723 ℕcn 11492 ℕ0cn0 11751 ℝ+crp 12243 [,)cico 12594 seqcseq 13223 ↑cexp 13283 abscabs 14431 ⇝ cli 14679 C𝑐cbcc 40227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-inf2 8957 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 ax-pre-sup 10468 ax-addf 10469 ax-mulf 10470 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-fal 1538 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-se 5410 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-isom 6241 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-1st 7552 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-oadd 7964 df-er 8146 df-pm 8266 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-sup 8759 df-inf 8760 df-oi 8827 df-card 9221 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-div 11152 df-nn 11493 df-2 11554 df-3 11555 df-n0 11752 df-z 11836 df-uz 12098 df-rp 12244 df-ico 12598 df-icc 12599 df-fz 12747 df-fzo 12888 df-fl 13016 df-seq 13224 df-exp 13284 df-fac 13488 df-hash 13545 df-shft 14264 df-cj 14296 df-re 14297 df-im 14298 df-sqrt 14432 df-abs 14433 df-limsup 14666 df-clim 14683 df-rlim 14684 df-sum 14881 df-prod 15097 df-fallfac 15198 df-bcc 40228 |
This theorem is referenced by: binomcxplemnotnn0 40247 |
Copyright terms: Public domain | W3C validator |