Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > binomcxplemcvg | Structured version Visualization version GIF version |
Description: Lemma for binomcxp 41864. The sum in binomcxplemnn0 41856 and its derivative (see the next theorem, binomcxplemdvsum 41862) converge, as long as their base 𝐽 is within the disk of convergence. Part of remark "This convergence allows us to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
Ref | Expression |
---|---|
binomcxp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
binomcxp.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
binomcxp.lt | ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) |
binomcxp.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
binomcxplem.f | ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) |
binomcxplem.s | ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) |
binomcxplem.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
binomcxplem.e | ⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) |
binomcxplem.d | ⊢ 𝐷 = (◡abs “ (0[,)𝑅)) |
Ref | Expression |
---|---|
binomcxplemcvg | ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → (seq0( + , (𝑆‘𝐽)) ∈ dom ⇝ ∧ seq1( + , (𝐸‘𝐽)) ∈ dom ⇝ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | binomcxplem.s | . . 3 ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) | |
2 | binomcxp.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐶 ∈ ℂ) |
4 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0) | |
5 | 3, 4 | bcccl 41846 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ ℂ) |
6 | binomcxplem.f | . . . . 5 ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) | |
7 | 5, 6 | fmptd 6970 | . . . 4 ⊢ (𝜑 → 𝐹:ℕ0⟶ℂ) |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → 𝐹:ℕ0⟶ℂ) |
9 | binomcxplem.r | . . 3 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
10 | binomcxplem.d | . . . . . . 7 ⊢ 𝐷 = (◡abs “ (0[,)𝑅)) | |
11 | 10 | eleq2i 2830 | . . . . . 6 ⊢ (𝐽 ∈ 𝐷 ↔ 𝐽 ∈ (◡abs “ (0[,)𝑅))) |
12 | absf 14977 | . . . . . . 7 ⊢ abs:ℂ⟶ℝ | |
13 | ffn 6584 | . . . . . . 7 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
14 | elpreima 6917 | . . . . . . 7 ⊢ (abs Fn ℂ → (𝐽 ∈ (◡abs “ (0[,)𝑅)) ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅)))) | |
15 | 12, 13, 14 | mp2b 10 | . . . . . 6 ⊢ (𝐽 ∈ (◡abs “ (0[,)𝑅)) ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅))) |
16 | 11, 15 | bitri 274 | . . . . 5 ⊢ (𝐽 ∈ 𝐷 ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅))) |
17 | 16 | simplbi 497 | . . . 4 ⊢ (𝐽 ∈ 𝐷 → 𝐽 ∈ ℂ) |
18 | 17 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → 𝐽 ∈ ℂ) |
19 | 16 | simprbi 496 | . . . . 5 ⊢ (𝐽 ∈ 𝐷 → (abs‘𝐽) ∈ (0[,)𝑅)) |
20 | 0re 10908 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
21 | ssrab2 4009 | . . . . . . . . . 10 ⊢ {𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ } ⊆ ℝ | |
22 | ressxr 10950 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℝ* | |
23 | 21, 22 | sstri 3926 | . . . . . . . . 9 ⊢ {𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ } ⊆ ℝ* |
24 | supxrcl 12978 | . . . . . . . . 9 ⊢ ({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ } ⊆ ℝ* → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*) | |
25 | 23, 24 | ax-mp 5 | . . . . . . . 8 ⊢ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ* |
26 | 9, 25 | eqeltri 2835 | . . . . . . 7 ⊢ 𝑅 ∈ ℝ* |
27 | elico2 13072 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝐽) ∈ (0[,)𝑅) ↔ ((abs‘𝐽) ∈ ℝ ∧ 0 ≤ (abs‘𝐽) ∧ (abs‘𝐽) < 𝑅))) | |
28 | 20, 26, 27 | mp2an 688 | . . . . . 6 ⊢ ((abs‘𝐽) ∈ (0[,)𝑅) ↔ ((abs‘𝐽) ∈ ℝ ∧ 0 ≤ (abs‘𝐽) ∧ (abs‘𝐽) < 𝑅)) |
29 | 28 | simp3bi 1145 | . . . . 5 ⊢ ((abs‘𝐽) ∈ (0[,)𝑅) → (abs‘𝐽) < 𝑅) |
30 | 19, 29 | syl 17 | . . . 4 ⊢ (𝐽 ∈ 𝐷 → (abs‘𝐽) < 𝑅) |
31 | 30 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → (abs‘𝐽) < 𝑅) |
32 | 1, 8, 9, 18, 31 | radcnvlt2 25483 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → seq0( + , (𝑆‘𝐽)) ∈ dom ⇝ ) |
33 | binomcxplem.e | . . . . . . 7 ⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) | |
34 | 33 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 ∈ ℂ) → 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1)))))) |
35 | simplr 765 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → 𝑏 = 𝐽) | |
36 | 35 | oveq1d 7270 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → (𝑏↑(𝑘 − 1)) = (𝐽↑(𝑘 − 1))) |
37 | 36 | oveq2d 7271 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))) = ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))) |
38 | 37 | mpteq2dva 5170 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1))))) |
39 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 ∈ ℂ) → 𝐽 ∈ ℂ) | |
40 | nnex 11909 | . . . . . . . 8 ⊢ ℕ ∈ V | |
41 | 40 | mptex 7081 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))) ∈ V |
42 | 41 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 ∈ ℂ) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))) ∈ V) |
43 | 34, 38, 39, 42 | fvmptd 6864 | . . . . 5 ⊢ ((𝜑 ∧ 𝐽 ∈ ℂ) → (𝐸‘𝐽) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1))))) |
44 | 17, 43 | sylan2 592 | . . . 4 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → (𝐸‘𝐽) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1))))) |
45 | 44 | seqeq3d 13657 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → seq1( + , (𝐸‘𝐽)) = seq1( + , (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))))) |
46 | eqid 2738 | . . . 4 ⊢ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))) | |
47 | 1, 9, 46, 8, 18, 31 | dvradcnv2 41854 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → seq1( + , (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1))))) ∈ dom ⇝ ) |
48 | 45, 47 | eqeltrd 2839 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → seq1( + , (𝐸‘𝐽)) ∈ dom ⇝ ) |
49 | 32, 48 | jca 511 | 1 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → (seq0( + , (𝑆‘𝐽)) ∈ dom ⇝ ∧ seq1( + , (𝐸‘𝐽)) ∈ dom ⇝ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 ◡ccnv 5579 dom cdm 5580 “ cima 5583 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 supcsup 9129 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 − cmin 11135 ℕcn 11903 ℕ0cn0 12163 ℝ+crp 12659 [,)cico 13010 seqcseq 13649 ↑cexp 13710 abscabs 14873 ⇝ cli 15121 C𝑐cbcc 41843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-fac 13916 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-prod 15544 df-fallfac 15645 df-bcc 41844 |
This theorem is referenced by: binomcxplemnotnn0 41863 |
Copyright terms: Public domain | W3C validator |