| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > binomcxplemcvg | Structured version Visualization version GIF version | ||
| Description: Lemma for binomcxp 44449. The sum in binomcxplemnn0 44441 and its derivative (see the next theorem, binomcxplemdvsum 44447) converge, as long as their base 𝐽 is within the disk of convergence. Part of remark "This convergence allows us to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| Ref | Expression |
|---|---|
| binomcxp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| binomcxp.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| binomcxp.lt | ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) |
| binomcxp.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| binomcxplem.f | ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) |
| binomcxplem.s | ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) |
| binomcxplem.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
| binomcxplem.e | ⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) |
| binomcxplem.d | ⊢ 𝐷 = (◡abs “ (0[,)𝑅)) |
| Ref | Expression |
|---|---|
| binomcxplemcvg | ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → (seq0( + , (𝑆‘𝐽)) ∈ dom ⇝ ∧ seq1( + , (𝐸‘𝐽)) ∈ dom ⇝ )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | binomcxplem.s | . . 3 ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) | |
| 2 | binomcxp.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐶 ∈ ℂ) |
| 4 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0) | |
| 5 | 3, 4 | bcccl 44431 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ ℂ) |
| 6 | binomcxplem.f | . . . . 5 ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) | |
| 7 | 5, 6 | fmptd 7047 | . . . 4 ⊢ (𝜑 → 𝐹:ℕ0⟶ℂ) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → 𝐹:ℕ0⟶ℂ) |
| 9 | binomcxplem.r | . . 3 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
| 10 | binomcxplem.d | . . . . . . 7 ⊢ 𝐷 = (◡abs “ (0[,)𝑅)) | |
| 11 | 10 | eleq2i 2823 | . . . . . 6 ⊢ (𝐽 ∈ 𝐷 ↔ 𝐽 ∈ (◡abs “ (0[,)𝑅))) |
| 12 | absf 15245 | . . . . . . 7 ⊢ abs:ℂ⟶ℝ | |
| 13 | ffn 6651 | . . . . . . 7 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
| 14 | elpreima 6991 | . . . . . . 7 ⊢ (abs Fn ℂ → (𝐽 ∈ (◡abs “ (0[,)𝑅)) ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅)))) | |
| 15 | 12, 13, 14 | mp2b 10 | . . . . . 6 ⊢ (𝐽 ∈ (◡abs “ (0[,)𝑅)) ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅))) |
| 16 | 11, 15 | bitri 275 | . . . . 5 ⊢ (𝐽 ∈ 𝐷 ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅))) |
| 17 | 16 | simplbi 497 | . . . 4 ⊢ (𝐽 ∈ 𝐷 → 𝐽 ∈ ℂ) |
| 18 | 17 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → 𝐽 ∈ ℂ) |
| 19 | 16 | simprbi 496 | . . . . 5 ⊢ (𝐽 ∈ 𝐷 → (abs‘𝐽) ∈ (0[,)𝑅)) |
| 20 | 0re 11114 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 21 | ssrab2 4027 | . . . . . . . . . 10 ⊢ {𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ } ⊆ ℝ | |
| 22 | ressxr 11156 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℝ* | |
| 23 | 21, 22 | sstri 3939 | . . . . . . . . 9 ⊢ {𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ } ⊆ ℝ* |
| 24 | supxrcl 13214 | . . . . . . . . 9 ⊢ ({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ } ⊆ ℝ* → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*) | |
| 25 | 23, 24 | ax-mp 5 | . . . . . . . 8 ⊢ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ* |
| 26 | 9, 25 | eqeltri 2827 | . . . . . . 7 ⊢ 𝑅 ∈ ℝ* |
| 27 | elico2 13310 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝐽) ∈ (0[,)𝑅) ↔ ((abs‘𝐽) ∈ ℝ ∧ 0 ≤ (abs‘𝐽) ∧ (abs‘𝐽) < 𝑅))) | |
| 28 | 20, 26, 27 | mp2an 692 | . . . . . 6 ⊢ ((abs‘𝐽) ∈ (0[,)𝑅) ↔ ((abs‘𝐽) ∈ ℝ ∧ 0 ≤ (abs‘𝐽) ∧ (abs‘𝐽) < 𝑅)) |
| 29 | 28 | simp3bi 1147 | . . . . 5 ⊢ ((abs‘𝐽) ∈ (0[,)𝑅) → (abs‘𝐽) < 𝑅) |
| 30 | 19, 29 | syl 17 | . . . 4 ⊢ (𝐽 ∈ 𝐷 → (abs‘𝐽) < 𝑅) |
| 31 | 30 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → (abs‘𝐽) < 𝑅) |
| 32 | 1, 8, 9, 18, 31 | radcnvlt2 26355 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → seq0( + , (𝑆‘𝐽)) ∈ dom ⇝ ) |
| 33 | binomcxplem.e | . . . . . . 7 ⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) | |
| 34 | 33 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 ∈ ℂ) → 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1)))))) |
| 35 | simplr 768 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → 𝑏 = 𝐽) | |
| 36 | 35 | oveq1d 7361 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → (𝑏↑(𝑘 − 1)) = (𝐽↑(𝑘 − 1))) |
| 37 | 36 | oveq2d 7362 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))) = ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))) |
| 38 | 37 | mpteq2dva 5182 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1))))) |
| 39 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 ∈ ℂ) → 𝐽 ∈ ℂ) | |
| 40 | nnex 12131 | . . . . . . . 8 ⊢ ℕ ∈ V | |
| 41 | 40 | mptex 7157 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))) ∈ V |
| 42 | 41 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 ∈ ℂ) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))) ∈ V) |
| 43 | 34, 38, 39, 42 | fvmptd 6936 | . . . . 5 ⊢ ((𝜑 ∧ 𝐽 ∈ ℂ) → (𝐸‘𝐽) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1))))) |
| 44 | 17, 43 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → (𝐸‘𝐽) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1))))) |
| 45 | 44 | seqeq3d 13916 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → seq1( + , (𝐸‘𝐽)) = seq1( + , (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))))) |
| 46 | eqid 2731 | . . . 4 ⊢ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1)))) | |
| 47 | 1, 9, 46, 8, 18, 31 | dvradcnv2 44439 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → seq1( + , (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝐽↑(𝑘 − 1))))) ∈ dom ⇝ ) |
| 48 | 45, 47 | eqeltrd 2831 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → seq1( + , (𝐸‘𝐽)) ∈ dom ⇝ ) |
| 49 | 32, 48 | jca 511 | 1 ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → (seq0( + , (𝑆‘𝐽)) ∈ dom ⇝ ∧ seq1( + , (𝐸‘𝐽)) ∈ dom ⇝ )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ⊆ wss 3897 class class class wbr 5089 ↦ cmpt 5170 ◡ccnv 5613 dom cdm 5614 “ cima 5617 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 supcsup 9324 ℂcc 11004 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 − cmin 11344 ℕcn 12125 ℕ0cn0 12381 ℝ+crp 12890 [,)cico 13247 seqcseq 13908 ↑cexp 13968 abscabs 15141 ⇝ cli 15391 C𝑐cbcc 44428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-fac 14181 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-prod 15811 df-fallfac 15914 df-bcc 44429 |
| This theorem is referenced by: binomcxplemnotnn0 44448 |
| Copyright terms: Public domain | W3C validator |