| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > modm2nep1 | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer less than a modulus greater than 4 plus one/minus two are not equal modulo the modulus. (Contributed by AV, 22-Nov-2025.) |
| Ref | Expression |
|---|---|
| modm1nep1.i | ⊢ 𝐼 = (0..^𝑁) |
| Ref | Expression |
|---|---|
| modm2nep1 | ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → ((𝑌 − 2) mod 𝑁) ≠ ((𝑌 + 1) mod 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoelz 13626 | . . . . . . . 8 ⊢ (𝑌 ∈ (0..^𝑁) → 𝑌 ∈ ℤ) | |
| 2 | modm1nep1.i | . . . . . . . 8 ⊢ 𝐼 = (0..^𝑁) | |
| 3 | 1, 2 | eleq2s 2847 | . . . . . . 7 ⊢ (𝑌 ∈ 𝐼 → 𝑌 ∈ ℤ) |
| 4 | 3 | zcnd 12645 | . . . . . 6 ⊢ (𝑌 ∈ 𝐼 → 𝑌 ∈ ℂ) |
| 5 | 2cnd 12265 | . . . . . 6 ⊢ (𝑌 ∈ 𝐼 → 2 ∈ ℂ) | |
| 6 | 4, 5 | negsubd 11545 | . . . . 5 ⊢ (𝑌 ∈ 𝐼 → (𝑌 + -2) = (𝑌 − 2)) |
| 7 | 6 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → (𝑌 + -2) = (𝑌 − 2)) |
| 8 | 7 | eqcomd 2736 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → (𝑌 − 2) = (𝑌 + -2)) |
| 9 | 8 | oveq1d 7404 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → ((𝑌 − 2) mod 𝑁) = ((𝑌 + -2) mod 𝑁)) |
| 10 | eluz5nn 12856 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘5) → 𝑁 ∈ ℕ) | |
| 11 | 10 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → 𝑁 ∈ ℕ) |
| 12 | simpr 484 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → 𝑌 ∈ 𝐼) | |
| 13 | 1zzd 12570 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → 1 ∈ ℤ) | |
| 14 | 2z 12571 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 15 | 14 | a1i 11 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → 2 ∈ ℤ) |
| 16 | 15 | znegcld 12646 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → -2 ∈ ℤ) |
| 17 | ax-1cn 11132 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 18 | 2cn 12262 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 19 | 17, 18 | subnegi 11507 | . . . . . . . 8 ⊢ (1 − -2) = (1 + 2) |
| 20 | 1p2e3 12330 | . . . . . . . 8 ⊢ (1 + 2) = 3 | |
| 21 | 19, 20 | eqtri 2753 | . . . . . . 7 ⊢ (1 − -2) = 3 |
| 22 | 21 | fveq2i 6863 | . . . . . 6 ⊢ (abs‘(1 − -2)) = (abs‘3) |
| 23 | 3nn0 12466 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
| 24 | 23 | nn0absidi 15403 | . . . . . 6 ⊢ (abs‘3) = 3 |
| 25 | 22, 24 | eqtri 2753 | . . . . 5 ⊢ (abs‘(1 − -2)) = 3 |
| 26 | 3nn 12266 | . . . . . . . 8 ⊢ 3 ∈ ℕ | |
| 27 | 26 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘5) → 3 ∈ ℕ) |
| 28 | eluz2 12805 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘5) ↔ (5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁)) | |
| 29 | 3re 12267 | . . . . . . . . . . 11 ⊢ 3 ∈ ℝ | |
| 30 | 29 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 3 ∈ ℝ) |
| 31 | 5re 12274 | . . . . . . . . . . 11 ⊢ 5 ∈ ℝ | |
| 32 | 31 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 5 ∈ ℝ) |
| 33 | zre 12539 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 34 | 33 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 𝑁 ∈ ℝ) |
| 35 | 3lt5 12365 | . . . . . . . . . . 11 ⊢ 3 < 5 | |
| 36 | 35 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 3 < 5) |
| 37 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 5 ≤ 𝑁) | |
| 38 | 30, 32, 34, 36, 37 | ltletrd 11340 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 3 < 𝑁) |
| 39 | 38 | 3adant1 1130 | . . . . . . . 8 ⊢ ((5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 3 < 𝑁) |
| 40 | 28, 39 | sylbi 217 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘5) → 3 < 𝑁) |
| 41 | elfzo1 13679 | . . . . . . 7 ⊢ (3 ∈ (1..^𝑁) ↔ (3 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 3 < 𝑁)) | |
| 42 | 27, 10, 40, 41 | syl3anbrc 1344 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘5) → 3 ∈ (1..^𝑁)) |
| 43 | 42 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → 3 ∈ (1..^𝑁)) |
| 44 | 25, 43 | eqeltrid 2833 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → (abs‘(1 − -2)) ∈ (1..^𝑁)) |
| 45 | 2 | mod2addne 47355 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝑌 ∈ 𝐼 ∧ 1 ∈ ℤ ∧ -2 ∈ ℤ) ∧ (abs‘(1 − -2)) ∈ (1..^𝑁)) → ((𝑌 + 1) mod 𝑁) ≠ ((𝑌 + -2) mod 𝑁)) |
| 46 | 11, 12, 13, 16, 44, 45 | syl131anc 1385 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → ((𝑌 + 1) mod 𝑁) ≠ ((𝑌 + -2) mod 𝑁)) |
| 47 | 46 | necomd 2981 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → ((𝑌 + -2) mod 𝑁) ≠ ((𝑌 + 1) mod 𝑁)) |
| 48 | 9, 47 | eqnetrd 2993 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → ((𝑌 − 2) mod 𝑁) ≠ ((𝑌 + 1) mod 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 ℝcr 11073 0cc0 11074 1c1 11075 + caddc 11077 < clt 11214 ≤ cle 11215 − cmin 11411 -cneg 11412 ℕcn 12187 2c2 12242 3c3 12243 5c5 12245 ℤcz 12535 ℤ≥cuz 12799 ..^cfzo 13621 mod cmo 13837 abscabs 15206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-inf 9400 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-n0 12449 df-z 12536 df-uz 12800 df-rp 12958 df-fz 13475 df-fzo 13622 df-fl 13760 df-mod 13838 df-seq 13973 df-exp 14033 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-dvds 16229 |
| This theorem is referenced by: pgnioedg1 48088 |
| Copyright terms: Public domain | W3C validator |