Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modm1nep2 Structured version   Visualization version   GIF version

Theorem modm1nep2 47372
Description: A nonnegative integer less than a modulus greater than 4 plus one/minus two are not equal modulo the modulus. (Contributed by AV, 22-Nov-2025.)
Hypothesis
Ref Expression
modm1nep1.i 𝐼 = (0..^𝑁)
Assertion
Ref Expression
modm1nep2 ((𝑁 ∈ (ℤ‘5) ∧ 𝑌𝐼) → ((𝑌 − 1) mod 𝑁) ≠ ((𝑌 + 2) mod 𝑁))

Proof of Theorem modm1nep2
StepHypRef Expression
1 elfzoelz 13581 . . . . . . . 8 (𝑌 ∈ (0..^𝑁) → 𝑌 ∈ ℤ)
2 modm1nep1.i . . . . . . . 8 𝐼 = (0..^𝑁)
31, 2eleq2s 2846 . . . . . . 7 (𝑌𝐼𝑌 ∈ ℤ)
43zcnd 12600 . . . . . 6 (𝑌𝐼𝑌 ∈ ℂ)
5 1cnd 11129 . . . . . 6 (𝑌𝐼 → 1 ∈ ℂ)
64, 5negsubd 11500 . . . . 5 (𝑌𝐼 → (𝑌 + -1) = (𝑌 − 1))
76eqcomd 2735 . . . 4 (𝑌𝐼 → (𝑌 − 1) = (𝑌 + -1))
87oveq1d 7368 . . 3 (𝑌𝐼 → ((𝑌 − 1) mod 𝑁) = ((𝑌 + -1) mod 𝑁))
98adantl 481 . 2 ((𝑁 ∈ (ℤ‘5) ∧ 𝑌𝐼) → ((𝑌 − 1) mod 𝑁) = ((𝑌 + -1) mod 𝑁))
10 eluz5nn 12811 . . . . 5 (𝑁 ∈ (ℤ‘5) → 𝑁 ∈ ℕ)
1110adantr 480 . . . 4 ((𝑁 ∈ (ℤ‘5) ∧ 𝑌𝐼) → 𝑁 ∈ ℕ)
12 simpr 484 . . . 4 ((𝑁 ∈ (ℤ‘5) ∧ 𝑌𝐼) → 𝑌𝐼)
13 2z 12526 . . . . 5 2 ∈ ℤ
1413a1i 11 . . . 4 ((𝑁 ∈ (ℤ‘5) ∧ 𝑌𝐼) → 2 ∈ ℤ)
15 1zzd 12525 . . . . 5 ((𝑁 ∈ (ℤ‘5) ∧ 𝑌𝐼) → 1 ∈ ℤ)
1615znegcld 12601 . . . 4 ((𝑁 ∈ (ℤ‘5) ∧ 𝑌𝐼) → -1 ∈ ℤ)
17 2cn 12222 . . . . . . . . 9 2 ∈ ℂ
18 ax-1cn 11086 . . . . . . . . 9 1 ∈ ℂ
1917, 18subnegi 11462 . . . . . . . 8 (2 − -1) = (2 + 1)
20 2p1e3 12284 . . . . . . . 8 (2 + 1) = 3
2119, 20eqtri 2752 . . . . . . 7 (2 − -1) = 3
2221fveq2i 6829 . . . . . 6 (abs‘(2 − -1)) = (abs‘3)
23 3nn0 12421 . . . . . . 7 3 ∈ ℕ0
2423nn0absidi 15357 . . . . . 6 (abs‘3) = 3
2522, 24eqtri 2752 . . . . 5 (abs‘(2 − -1)) = 3
26 3nn 12226 . . . . . . . 8 3 ∈ ℕ
2726a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘5) → 3 ∈ ℕ)
28 eluz2 12760 . . . . . . . 8 (𝑁 ∈ (ℤ‘5) ↔ (5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁))
29 3re 12227 . . . . . . . . . . 11 3 ∈ ℝ
3029a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 3 ∈ ℝ)
31 5re 12234 . . . . . . . . . . 11 5 ∈ ℝ
3231a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 5 ∈ ℝ)
33 zre 12494 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3433adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 𝑁 ∈ ℝ)
35 3lt5 12320 . . . . . . . . . . 11 3 < 5
3635a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 3 < 5)
37 simpr 484 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 5 ≤ 𝑁)
3830, 32, 34, 36, 37ltletrd 11295 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 3 < 𝑁)
39383adant1 1130 . . . . . . . 8 ((5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 3 < 𝑁)
4028, 39sylbi 217 . . . . . . 7 (𝑁 ∈ (ℤ‘5) → 3 < 𝑁)
41 elfzo1 13634 . . . . . . 7 (3 ∈ (1..^𝑁) ↔ (3 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 3 < 𝑁))
4227, 10, 40, 41syl3anbrc 1344 . . . . . 6 (𝑁 ∈ (ℤ‘5) → 3 ∈ (1..^𝑁))
4342adantr 480 . . . . 5 ((𝑁 ∈ (ℤ‘5) ∧ 𝑌𝐼) → 3 ∈ (1..^𝑁))
4425, 43eqeltrid 2832 . . . 4 ((𝑁 ∈ (ℤ‘5) ∧ 𝑌𝐼) → (abs‘(2 − -1)) ∈ (1..^𝑁))
452mod2addne 47368 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑌𝐼 ∧ 2 ∈ ℤ ∧ -1 ∈ ℤ) ∧ (abs‘(2 − -1)) ∈ (1..^𝑁)) → ((𝑌 + 2) mod 𝑁) ≠ ((𝑌 + -1) mod 𝑁))
4611, 12, 14, 16, 44, 45syl131anc 1385 . . 3 ((𝑁 ∈ (ℤ‘5) ∧ 𝑌𝐼) → ((𝑌 + 2) mod 𝑁) ≠ ((𝑌 + -1) mod 𝑁))
4746necomd 2980 . 2 ((𝑁 ∈ (ℤ‘5) ∧ 𝑌𝐼) → ((𝑌 + -1) mod 𝑁) ≠ ((𝑌 + 2) mod 𝑁))
489, 47eqnetrd 2992 1 ((𝑁 ∈ (ℤ‘5) ∧ 𝑌𝐼) → ((𝑌 − 1) mod 𝑁) ≠ ((𝑌 + 2) mod 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5095  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   < clt 11168  cle 11169  cmin 11366  -cneg 11367  cn 12147  2c2 12202  3c3 12203  5c5 12205  cz 12490  cuz 12754  ..^cfzo 13576   mod cmo 13792  abscabs 15160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-n0 12404  df-z 12491  df-uz 12755  df-rp 12913  df-fz 13430  df-fzo 13577  df-fl 13715  df-mod 13793  df-seq 13928  df-exp 13988  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-dvds 16183
This theorem is referenced by:  pgnioedg3  48114
  Copyright terms: Public domain W3C validator