| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > modm1nep2 | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer less than a modulus greater than 4 plus one/minus two are not equal modulo the modulus. (Contributed by AV, 22-Nov-2025.) |
| Ref | Expression |
|---|---|
| modm1nep1.i | ⊢ 𝐼 = (0..^𝑁) |
| Ref | Expression |
|---|---|
| modm1nep2 | ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → ((𝑌 − 1) mod 𝑁) ≠ ((𝑌 + 2) mod 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoelz 13596 | . . . . . . . 8 ⊢ (𝑌 ∈ (0..^𝑁) → 𝑌 ∈ ℤ) | |
| 2 | modm1nep1.i | . . . . . . . 8 ⊢ 𝐼 = (0..^𝑁) | |
| 3 | 1, 2 | eleq2s 2846 | . . . . . . 7 ⊢ (𝑌 ∈ 𝐼 → 𝑌 ∈ ℤ) |
| 4 | 3 | zcnd 12615 | . . . . . 6 ⊢ (𝑌 ∈ 𝐼 → 𝑌 ∈ ℂ) |
| 5 | 1cnd 11145 | . . . . . 6 ⊢ (𝑌 ∈ 𝐼 → 1 ∈ ℂ) | |
| 6 | 4, 5 | negsubd 11515 | . . . . 5 ⊢ (𝑌 ∈ 𝐼 → (𝑌 + -1) = (𝑌 − 1)) |
| 7 | 6 | eqcomd 2735 | . . . 4 ⊢ (𝑌 ∈ 𝐼 → (𝑌 − 1) = (𝑌 + -1)) |
| 8 | 7 | oveq1d 7384 | . . 3 ⊢ (𝑌 ∈ 𝐼 → ((𝑌 − 1) mod 𝑁) = ((𝑌 + -1) mod 𝑁)) |
| 9 | 8 | adantl 481 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → ((𝑌 − 1) mod 𝑁) = ((𝑌 + -1) mod 𝑁)) |
| 10 | eluz5nn 12826 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘5) → 𝑁 ∈ ℕ) | |
| 11 | 10 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → 𝑁 ∈ ℕ) |
| 12 | simpr 484 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → 𝑌 ∈ 𝐼) | |
| 13 | 2z 12541 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 14 | 13 | a1i 11 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → 2 ∈ ℤ) |
| 15 | 1zzd 12540 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → 1 ∈ ℤ) | |
| 16 | 15 | znegcld 12616 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → -1 ∈ ℤ) |
| 17 | 2cn 12237 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 18 | ax-1cn 11102 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 19 | 17, 18 | subnegi 11477 | . . . . . . . 8 ⊢ (2 − -1) = (2 + 1) |
| 20 | 2p1e3 12299 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
| 21 | 19, 20 | eqtri 2752 | . . . . . . 7 ⊢ (2 − -1) = 3 |
| 22 | 21 | fveq2i 6843 | . . . . . 6 ⊢ (abs‘(2 − -1)) = (abs‘3) |
| 23 | 3nn0 12436 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
| 24 | 23 | nn0absidi 15373 | . . . . . 6 ⊢ (abs‘3) = 3 |
| 25 | 22, 24 | eqtri 2752 | . . . . 5 ⊢ (abs‘(2 − -1)) = 3 |
| 26 | 3nn 12241 | . . . . . . . 8 ⊢ 3 ∈ ℕ | |
| 27 | 26 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘5) → 3 ∈ ℕ) |
| 28 | eluz2 12775 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘5) ↔ (5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁)) | |
| 29 | 3re 12242 | . . . . . . . . . . 11 ⊢ 3 ∈ ℝ | |
| 30 | 29 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 3 ∈ ℝ) |
| 31 | 5re 12249 | . . . . . . . . . . 11 ⊢ 5 ∈ ℝ | |
| 32 | 31 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 5 ∈ ℝ) |
| 33 | zre 12509 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 34 | 33 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 𝑁 ∈ ℝ) |
| 35 | 3lt5 12335 | . . . . . . . . . . 11 ⊢ 3 < 5 | |
| 36 | 35 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 3 < 5) |
| 37 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 5 ≤ 𝑁) | |
| 38 | 30, 32, 34, 36, 37 | ltletrd 11310 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 3 < 𝑁) |
| 39 | 38 | 3adant1 1130 | . . . . . . . 8 ⊢ ((5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 3 < 𝑁) |
| 40 | 28, 39 | sylbi 217 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘5) → 3 < 𝑁) |
| 41 | elfzo1 13649 | . . . . . . 7 ⊢ (3 ∈ (1..^𝑁) ↔ (3 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 3 < 𝑁)) | |
| 42 | 27, 10, 40, 41 | syl3anbrc 1344 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘5) → 3 ∈ (1..^𝑁)) |
| 43 | 42 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → 3 ∈ (1..^𝑁)) |
| 44 | 25, 43 | eqeltrid 2832 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → (abs‘(2 − -1)) ∈ (1..^𝑁)) |
| 45 | 2 | mod2addne 47338 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝑌 ∈ 𝐼 ∧ 2 ∈ ℤ ∧ -1 ∈ ℤ) ∧ (abs‘(2 − -1)) ∈ (1..^𝑁)) → ((𝑌 + 2) mod 𝑁) ≠ ((𝑌 + -1) mod 𝑁)) |
| 46 | 11, 12, 14, 16, 44, 45 | syl131anc 1385 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → ((𝑌 + 2) mod 𝑁) ≠ ((𝑌 + -1) mod 𝑁)) |
| 47 | 46 | necomd 2980 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → ((𝑌 + -1) mod 𝑁) ≠ ((𝑌 + 2) mod 𝑁)) |
| 48 | 9, 47 | eqnetrd 2992 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → ((𝑌 − 1) mod 𝑁) ≠ ((𝑌 + 2) mod 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 < clt 11184 ≤ cle 11185 − cmin 11381 -cneg 11382 ℕcn 12162 2c2 12217 3c3 12218 5c5 12220 ℤcz 12505 ℤ≥cuz 12769 ..^cfzo 13591 mod cmo 13807 abscabs 15176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 |
| This theorem is referenced by: pgnioedg3 48073 |
| Copyright terms: Public domain | W3C validator |