| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > modm1nep2 | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer less than a modulus greater than 4 plus one/minus two are not equal modulo the modulus. (Contributed by AV, 22-Nov-2025.) |
| Ref | Expression |
|---|---|
| modm1nep1.i | ⊢ 𝐼 = (0..^𝑁) |
| Ref | Expression |
|---|---|
| modm1nep2 | ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → ((𝑌 − 1) mod 𝑁) ≠ ((𝑌 + 2) mod 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoelz 13554 | . . . . . . . 8 ⊢ (𝑌 ∈ (0..^𝑁) → 𝑌 ∈ ℤ) | |
| 2 | modm1nep1.i | . . . . . . . 8 ⊢ 𝐼 = (0..^𝑁) | |
| 3 | 1, 2 | eleq2s 2849 | . . . . . . 7 ⊢ (𝑌 ∈ 𝐼 → 𝑌 ∈ ℤ) |
| 4 | 3 | zcnd 12573 | . . . . . 6 ⊢ (𝑌 ∈ 𝐼 → 𝑌 ∈ ℂ) |
| 5 | 1cnd 11102 | . . . . . 6 ⊢ (𝑌 ∈ 𝐼 → 1 ∈ ℂ) | |
| 6 | 4, 5 | negsubd 11473 | . . . . 5 ⊢ (𝑌 ∈ 𝐼 → (𝑌 + -1) = (𝑌 − 1)) |
| 7 | 6 | eqcomd 2737 | . . . 4 ⊢ (𝑌 ∈ 𝐼 → (𝑌 − 1) = (𝑌 + -1)) |
| 8 | 7 | oveq1d 7356 | . . 3 ⊢ (𝑌 ∈ 𝐼 → ((𝑌 − 1) mod 𝑁) = ((𝑌 + -1) mod 𝑁)) |
| 9 | 8 | adantl 481 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → ((𝑌 − 1) mod 𝑁) = ((𝑌 + -1) mod 𝑁)) |
| 10 | eluz5nn 12784 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘5) → 𝑁 ∈ ℕ) | |
| 11 | 10 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → 𝑁 ∈ ℕ) |
| 12 | simpr 484 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → 𝑌 ∈ 𝐼) | |
| 13 | 2z 12499 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 14 | 13 | a1i 11 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → 2 ∈ ℤ) |
| 15 | 1zzd 12498 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → 1 ∈ ℤ) | |
| 16 | 15 | znegcld 12574 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → -1 ∈ ℤ) |
| 17 | 2cn 12195 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 18 | ax-1cn 11059 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 19 | 17, 18 | subnegi 11435 | . . . . . . . 8 ⊢ (2 − -1) = (2 + 1) |
| 20 | 2p1e3 12257 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
| 21 | 19, 20 | eqtri 2754 | . . . . . . 7 ⊢ (2 − -1) = 3 |
| 22 | 21 | fveq2i 6820 | . . . . . 6 ⊢ (abs‘(2 − -1)) = (abs‘3) |
| 23 | 3nn0 12394 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
| 24 | 23 | nn0absidi 15333 | . . . . . 6 ⊢ (abs‘3) = 3 |
| 25 | 22, 24 | eqtri 2754 | . . . . 5 ⊢ (abs‘(2 − -1)) = 3 |
| 26 | 3nn 12199 | . . . . . . . 8 ⊢ 3 ∈ ℕ | |
| 27 | 26 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘5) → 3 ∈ ℕ) |
| 28 | eluz2 12733 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘5) ↔ (5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁)) | |
| 29 | 3re 12200 | . . . . . . . . . . 11 ⊢ 3 ∈ ℝ | |
| 30 | 29 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 3 ∈ ℝ) |
| 31 | 5re 12207 | . . . . . . . . . . 11 ⊢ 5 ∈ ℝ | |
| 32 | 31 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 5 ∈ ℝ) |
| 33 | zre 12467 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 34 | 33 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 𝑁 ∈ ℝ) |
| 35 | 3lt5 12293 | . . . . . . . . . . 11 ⊢ 3 < 5 | |
| 36 | 35 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 3 < 5) |
| 37 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 5 ≤ 𝑁) | |
| 38 | 30, 32, 34, 36, 37 | ltletrd 11268 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 3 < 𝑁) |
| 39 | 38 | 3adant1 1130 | . . . . . . . 8 ⊢ ((5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁) → 3 < 𝑁) |
| 40 | 28, 39 | sylbi 217 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘5) → 3 < 𝑁) |
| 41 | elfzo1 13607 | . . . . . . 7 ⊢ (3 ∈ (1..^𝑁) ↔ (3 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 3 < 𝑁)) | |
| 42 | 27, 10, 40, 41 | syl3anbrc 1344 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘5) → 3 ∈ (1..^𝑁)) |
| 43 | 42 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → 3 ∈ (1..^𝑁)) |
| 44 | 25, 43 | eqeltrid 2835 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → (abs‘(2 − -1)) ∈ (1..^𝑁)) |
| 45 | 2 | mod2addne 47395 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝑌 ∈ 𝐼 ∧ 2 ∈ ℤ ∧ -1 ∈ ℤ) ∧ (abs‘(2 − -1)) ∈ (1..^𝑁)) → ((𝑌 + 2) mod 𝑁) ≠ ((𝑌 + -1) mod 𝑁)) |
| 46 | 11, 12, 14, 16, 44, 45 | syl131anc 1385 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → ((𝑌 + 2) mod 𝑁) ≠ ((𝑌 + -1) mod 𝑁)) |
| 47 | 46 | necomd 2983 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → ((𝑌 + -1) mod 𝑁) ≠ ((𝑌 + 2) mod 𝑁)) |
| 48 | 9, 47 | eqnetrd 2995 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → ((𝑌 − 1) mod 𝑁) ≠ ((𝑌 + 2) mod 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 ℝcr 11000 0cc0 11001 1c1 11002 + caddc 11004 < clt 11141 ≤ cle 11142 − cmin 11339 -cneg 11340 ℕcn 12120 2c2 12175 3c3 12176 5c5 12178 ℤcz 12463 ℤ≥cuz 12727 ..^cfzo 13549 mod cmo 13768 abscabs 15136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-fz 13403 df-fzo 13550 df-fl 13691 df-mod 13769 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-dvds 16159 |
| This theorem is referenced by: pgnioedg3 48141 |
| Copyright terms: Public domain | W3C validator |