MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zleltp1 Structured version   Visualization version   GIF version

Theorem zleltp1 12512
Description: Integer ordering relation. (Contributed by NM, 10-May-2004.)
Assertion
Ref Expression
zleltp1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 < (𝑁 + 1)))

Proof of Theorem zleltp1
StepHypRef Expression
1 zre 12461 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2 zre 12461 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 1re 11113 . . . 4 1 ∈ ℝ
4 leadd1 11581 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑀𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
53, 4mp3an3 1450 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
61, 2, 5syl2an 596 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
7 peano2z 12502 . . 3 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
8 zltp1le 12511 . . 3 ((𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑀 < (𝑁 + 1) ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
97, 8sylan2 593 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < (𝑁 + 1) ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
106, 9bitr4d 281 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 < (𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106   class class class wbr 5103  (class class class)co 7351  cr 11008  1c1 11010   + caddc 11012   < clt 11147  cle 11148  cz 12457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-om 7795  df-2nd 7914  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-er 8606  df-en 8842  df-dom 8843  df-sdom 8844  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-nn 12112  df-n0 12372  df-z 12458
This theorem is referenced by:  zltlem1  12514  nnleltp1  12516  nn0leltp1  12520  suprzcl  12541  le9lt10  12603  uzwo  12790  flge  13664  flhalf  13689  om2uzlti  13809  seqf1olem1  13901  fz1isolem  14314  hashtpg  14338  ltoddhalfle  16203  prmind2  16521  prm23lt5  16646  prmreclem2  16749  prmgaplem8  16890  chfacfisf  22155  chfacfisfcpmat  22156  chfacfscmulgsum  22161  chfacfpmmulgsum  22165  plyco0  25505  plydivex  25609  logf1o2  25957  ang180lem3  26113  basellem3  26384  ppieq0  26477  chpeq0  26508  bposlem1  26584  bposlem6  26589  dchrvmasumiflem1  26801  mulog2sumlem2  26835  dp2lt10  31566  1smat1  32197  ballotlemfc0  32904  ballotlemfcc  32905  poimirlem24  36040  poimirlem28  36044  fdc  36142  sticksstones10  40501  sticksstones12a  40503  sticksstones12  40504  sticksstones22  40514  irrapxlem1  41054  pellexlem5  41065  jm2.24  41196  zltlesub  43424  dvnxpaek  44084  fourierdlem50  44298  zgeltp1eq  45442  odz2prm2pw  45656  fmtno4prmfac  45665  2pwp1prm  45682  nnsum3primesle9  45887
  Copyright terms: Public domain W3C validator