| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zleltp1 | Structured version Visualization version GIF version | ||
| Description: Integer ordering relation. (Contributed by NM, 10-May-2004.) |
| Ref | Expression |
|---|---|
| zleltp1 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ 𝑀 < (𝑁 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 12509 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 2 | zre 12509 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 3 | 1re 11150 | . . . 4 ⊢ 1 ∈ ℝ | |
| 4 | leadd1 11622 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑀 ≤ 𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1))) | |
| 5 | 3, 4 | mp3an3 1452 | . . 3 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 ≤ 𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1))) |
| 6 | 1, 2, 5 | syl2an 596 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1))) |
| 7 | peano2z 12550 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
| 8 | zltp1le 12559 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑀 < (𝑁 + 1) ↔ (𝑀 + 1) ≤ (𝑁 + 1))) | |
| 9 | 7, 8 | sylan2 593 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < (𝑁 + 1) ↔ (𝑀 + 1) ≤ (𝑁 + 1))) |
| 10 | 6, 9 | bitr4d 282 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ 𝑀 < (𝑁 + 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 ℝcr 11043 1c1 11045 + caddc 11047 < clt 11184 ≤ cle 11185 ℤcz 12505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 |
| This theorem is referenced by: zltlem1 12562 nnleltp1 12565 nn0leltp1 12569 suprzcl 12590 le9lt10 12652 uzwo 12846 flge 13743 flhalf 13768 om2uzlti 13891 seqf1olem1 13982 fz1isolem 14402 hashtpg 14426 ltoddhalfle 16307 prmind2 16631 prm23lt5 16761 prmreclem2 16864 prmgaplem8 17005 chfacfisf 22717 chfacfisfcpmat 22718 chfacfscmulgsum 22723 chfacfpmmulgsum 22727 plyco0 26073 plydivex 26181 logf1o2 26535 ang180lem3 26697 basellem3 26969 ppieq0 27062 chpeq0 27095 bposlem1 27171 bposlem6 27176 dchrvmasumiflem1 27388 mulog2sumlem2 27422 dp2lt10 32777 1smat1 33767 ballotlemfc0 34457 ballotlemfcc 34458 poimirlem24 37611 poimirlem28 37615 fdc 37712 sticksstones10 42116 sticksstones12a 42118 sticksstones12 42119 sticksstones22 42129 irrapxlem1 42783 pellexlem5 42794 jm2.24 42925 zltlesub 45256 dvnxpaek 45913 fourierdlem50 46127 zgeltp1eq 47283 odz2prm2pw 47537 fmtno4prmfac 47546 2pwp1prm 47563 nnsum3primesle9 47768 |
| Copyright terms: Public domain | W3C validator |