![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zleltp1 | Structured version Visualization version GIF version |
Description: Integer ordering relation. (Contributed by NM, 10-May-2004.) |
Ref | Expression |
---|---|
zleltp1 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ 𝑀 < (𝑁 + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 12567 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
2 | zre 12567 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
3 | 1re 11219 | . . . 4 ⊢ 1 ∈ ℝ | |
4 | leadd1 11687 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑀 ≤ 𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1))) | |
5 | 3, 4 | mp3an3 1449 | . . 3 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 ≤ 𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1))) |
6 | 1, 2, 5 | syl2an 595 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1))) |
7 | peano2z 12608 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
8 | zltp1le 12617 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑀 < (𝑁 + 1) ↔ (𝑀 + 1) ≤ (𝑁 + 1))) | |
9 | 7, 8 | sylan2 592 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < (𝑁 + 1) ↔ (𝑀 + 1) ≤ (𝑁 + 1))) |
10 | 6, 9 | bitr4d 282 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ 𝑀 < (𝑁 + 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2105 class class class wbr 5148 (class class class)co 7412 ℝcr 11112 1c1 11114 + caddc 11116 < clt 11253 ≤ cle 11254 ℤcz 12563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-n0 12478 df-z 12564 |
This theorem is referenced by: zltlem1 12620 nnleltp1 12622 nn0leltp1 12626 suprzcl 12647 le9lt10 12709 uzwo 12900 flge 13775 flhalf 13800 om2uzlti 13920 seqf1olem1 14012 fz1isolem 14427 hashtpg 14451 ltoddhalfle 16309 prmind2 16627 prm23lt5 16752 prmreclem2 16855 prmgaplem8 16996 chfacfisf 22577 chfacfisfcpmat 22578 chfacfscmulgsum 22583 chfacfpmmulgsum 22587 plyco0 25942 plydivex 26047 logf1o2 26395 ang180lem3 26553 basellem3 26824 ppieq0 26917 chpeq0 26948 bposlem1 27024 bposlem6 27029 dchrvmasumiflem1 27241 mulog2sumlem2 27275 dp2lt10 32318 1smat1 33083 ballotlemfc0 33790 ballotlemfcc 33791 poimirlem24 36816 poimirlem28 36820 fdc 36917 sticksstones10 41278 sticksstones12a 41280 sticksstones12 41281 sticksstones22 41291 irrapxlem1 41863 pellexlem5 41874 jm2.24 42005 zltlesub 44294 dvnxpaek 44957 fourierdlem50 45171 zgeltp1eq 46316 odz2prm2pw 46530 fmtno4prmfac 46539 2pwp1prm 46556 nnsum3primesle9 46761 |
Copyright terms: Public domain | W3C validator |