MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zleltp1 Structured version   Visualization version   GIF version

Theorem zleltp1 11839
Description: Integer ordering relation. (Contributed by NM, 10-May-2004.)
Assertion
Ref Expression
zleltp1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 < (𝑁 + 1)))

Proof of Theorem zleltp1
StepHypRef Expression
1 zre 11790 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2 zre 11790 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 1re 10431 . . . 4 1 ∈ ℝ
4 leadd1 10901 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑀𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
53, 4mp3an3 1429 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
61, 2, 5syl2an 586 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
7 peano2z 11829 . . 3 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
8 zltp1le 11838 . . 3 ((𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑀 < (𝑁 + 1) ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
97, 8sylan2 583 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < (𝑁 + 1) ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
106, 9bitr4d 274 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 < (𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wcel 2048   class class class wbr 4923  (class class class)co 6970  cr 10326  1c1 10328   + caddc 10330   < clt 10466  cle 10467  cz 11786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-n0 11701  df-z 11787
This theorem is referenced by:  zltlem1  11841  nnleltp1  11843  nn0leltp1  11847  suprzcl  11868  le9lt10  11932  uzwo  12118  flge  12983  flhalf  13008  om2uzlti  13126  seqf1olem1  13217  fz1isolem  13622  hashtpg  13644  ltoddhalfle  15560  prmind2  15875  prm23lt5  15997  prmreclem2  16099  prmgaplem8  16240  chfacfisf  21156  chfacfisfcpmat  21157  chfacfscmulgsum  21162  chfacfpmmulgsum  21166  plyco0  24475  plydivex  24579  logf1o2  24924  ang180lem3  25080  basellem3  25352  ppieq0  25445  chpeq0  25476  bposlem1  25552  bposlem6  25557  dchrvmasumiflem1  25769  mulog2sumlem2  25803  dp2lt10  30295  1smat1  30668  ballotlemfc0  31353  ballotlemfcc  31354  poimirlem24  34305  poimirlem28  34309  fdc  34410  irrapxlem1  38760  pellexlem5  38771  jm2.24  38901  zltlesub  40926  dvnxpaek  41603  fourierdlem50  41818  zgeltp1eq  42861  odz2prm2pw  43033  fmtno4prmfac  43042  2pwp1prm  43059  nnsum3primesle9  43267
  Copyright terms: Public domain W3C validator