MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zleltp1 Structured version   Visualization version   GIF version

Theorem zleltp1 12021
Description: Integer ordering relation. (Contributed by NM, 10-May-2004.)
Assertion
Ref Expression
zleltp1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 < (𝑁 + 1)))

Proof of Theorem zleltp1
StepHypRef Expression
1 zre 11973 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2 zre 11973 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 1re 10630 . . . 4 1 ∈ ℝ
4 leadd1 11097 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑀𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
53, 4mp3an3 1447 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
61, 2, 5syl2an 598 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
7 peano2z 12011 . . 3 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
8 zltp1le 12020 . . 3 ((𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑀 < (𝑁 + 1) ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
97, 8sylan2 595 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < (𝑁 + 1) ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
106, 9bitr4d 285 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 < (𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2111   class class class wbr 5030  (class class class)co 7135  cr 10525  1c1 10527   + caddc 10529   < clt 10664  cle 10665  cz 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970
This theorem is referenced by:  zltlem1  12023  nnleltp1  12025  nn0leltp1  12029  suprzcl  12050  le9lt10  12113  uzwo  12299  flge  13170  flhalf  13195  om2uzlti  13313  seqf1olem1  13405  fz1isolem  13815  hashtpg  13839  ltoddhalfle  15702  prmind2  16019  prm23lt5  16141  prmreclem2  16243  prmgaplem8  16384  chfacfisf  21459  chfacfisfcpmat  21460  chfacfscmulgsum  21465  chfacfpmmulgsum  21469  plyco0  24789  plydivex  24893  logf1o2  25241  ang180lem3  25397  basellem3  25668  ppieq0  25761  chpeq0  25792  bposlem1  25868  bposlem6  25873  dchrvmasumiflem1  26085  mulog2sumlem2  26119  dp2lt10  30586  1smat1  31157  ballotlemfc0  31860  ballotlemfcc  31861  poimirlem24  35078  poimirlem28  35082  fdc  35180  irrapxlem1  39758  pellexlem5  39769  jm2.24  39899  zltlesub  41911  dvnxpaek  42579  fourierdlem50  42793  zgeltp1eq  43861  odz2prm2pw  44075  fmtno4prmfac  44084  2pwp1prm  44101  nnsum3primesle9  44307
  Copyright terms: Public domain W3C validator