![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zleltp1 | Structured version Visualization version GIF version |
Description: Integer ordering relation. (Contributed by NM, 10-May-2004.) |
Ref | Expression |
---|---|
zleltp1 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ 𝑀 < (𝑁 + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 12615 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
2 | zre 12615 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
3 | 1re 11259 | . . . 4 ⊢ 1 ∈ ℝ | |
4 | leadd1 11729 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑀 ≤ 𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1))) | |
5 | 3, 4 | mp3an3 1449 | . . 3 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 ≤ 𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1))) |
6 | 1, 2, 5 | syl2an 596 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1))) |
7 | peano2z 12656 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
8 | zltp1le 12665 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑀 < (𝑁 + 1) ↔ (𝑀 + 1) ≤ (𝑁 + 1))) | |
9 | 7, 8 | sylan2 593 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < (𝑁 + 1) ↔ (𝑀 + 1) ≤ (𝑁 + 1))) |
10 | 6, 9 | bitr4d 282 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ 𝑀 < (𝑁 + 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 ℝcr 11152 1c1 11154 + caddc 11156 < clt 11293 ≤ cle 11294 ℤcz 12611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 |
This theorem is referenced by: zltlem1 12668 nnleltp1 12671 nn0leltp1 12675 suprzcl 12696 le9lt10 12758 uzwo 12951 flge 13842 flhalf 13867 om2uzlti 13988 seqf1olem1 14079 fz1isolem 14497 hashtpg 14521 ltoddhalfle 16395 prmind2 16719 prm23lt5 16848 prmreclem2 16951 prmgaplem8 17092 chfacfisf 22876 chfacfisfcpmat 22877 chfacfscmulgsum 22882 chfacfpmmulgsum 22886 plyco0 26246 plydivex 26354 logf1o2 26707 ang180lem3 26869 basellem3 27141 ppieq0 27234 chpeq0 27267 bposlem1 27343 bposlem6 27348 dchrvmasumiflem1 27560 mulog2sumlem2 27594 dp2lt10 32851 1smat1 33765 ballotlemfc0 34474 ballotlemfcc 34475 poimirlem24 37631 poimirlem28 37635 fdc 37732 sticksstones10 42137 sticksstones12a 42139 sticksstones12 42140 sticksstones22 42150 irrapxlem1 42810 pellexlem5 42821 jm2.24 42952 zltlesub 45236 dvnxpaek 45898 fourierdlem50 46112 zgeltp1eq 47259 odz2prm2pw 47488 fmtno4prmfac 47497 2pwp1prm 47514 nnsum3primesle9 47719 |
Copyright terms: Public domain | W3C validator |