| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzsup | Structured version Visualization version GIF version | ||
| Description: An upper set of integers is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
| Ref | Expression |
|---|---|
| uzsup.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| uzsup | ⊢ (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℤ) | |
| 2 | flcl 13699 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℤ) | |
| 3 | 2 | peano2zd 12583 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℤ) |
| 4 | id 22 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℤ) | |
| 5 | ifcl 4522 | . . . . . . 7 ⊢ ((((⌊‘𝑥) + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ) | |
| 6 | 3, 4, 5 | syl2anr 597 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ) |
| 7 | zre 12475 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 8 | reflcl 13700 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ) | |
| 9 | peano2re 11289 | . . . . . . . 8 ⊢ ((⌊‘𝑥) ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ) | |
| 10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ) |
| 11 | max1 13087 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) | |
| 12 | 7, 10, 11 | syl2an 596 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) |
| 13 | eluz2 12741 | . . . . . 6 ⊢ (if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))) | |
| 14 | 1, 6, 12, 13 | syl3anbrc 1344 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ (ℤ≥‘𝑀)) |
| 15 | uzsup.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 16 | 14, 15 | eleqtrrdi 2839 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ 𝑍) |
| 17 | simpr 484 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
| 18 | 10 | adantl 481 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((⌊‘𝑥) + 1) ∈ ℝ) |
| 19 | 6 | zred 12580 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℝ) |
| 20 | fllep1 13705 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1)) | |
| 21 | 20 | adantl 481 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ ((⌊‘𝑥) + 1)) |
| 22 | max2 13089 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → ((⌊‘𝑥) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) | |
| 23 | 7, 10, 22 | syl2an 596 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((⌊‘𝑥) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) |
| 24 | 17, 18, 19, 21, 23 | letrd 11273 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) |
| 25 | breq2 5096 | . . . . 5 ⊢ (𝑛 = if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) → (𝑥 ≤ 𝑛 ↔ 𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))) | |
| 26 | 25 | rspcev 3577 | . . . 4 ⊢ ((if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ 𝑍 ∧ 𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) → ∃𝑛 ∈ 𝑍 𝑥 ≤ 𝑛) |
| 27 | 16, 24, 26 | syl2anc 584 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ∃𝑛 ∈ 𝑍 𝑥 ≤ 𝑛) |
| 28 | 27 | ralrimiva 3121 | . 2 ⊢ (𝑀 ∈ ℤ → ∀𝑥 ∈ ℝ ∃𝑛 ∈ 𝑍 𝑥 ≤ 𝑛) |
| 29 | uzssz 12756 | . . . . . 6 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
| 30 | 15, 29 | eqsstri 3982 | . . . . 5 ⊢ 𝑍 ⊆ ℤ |
| 31 | zssre 12478 | . . . . 5 ⊢ ℤ ⊆ ℝ | |
| 32 | 30, 31 | sstri 3945 | . . . 4 ⊢ 𝑍 ⊆ ℝ |
| 33 | ressxr 11159 | . . . 4 ⊢ ℝ ⊆ ℝ* | |
| 34 | 32, 33 | sstri 3945 | . . 3 ⊢ 𝑍 ⊆ ℝ* |
| 35 | supxrunb1 13221 | . . 3 ⊢ (𝑍 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑛 ∈ 𝑍 𝑥 ≤ 𝑛 ↔ sup(𝑍, ℝ*, < ) = +∞)) | |
| 36 | 34, 35 | ax-mp 5 | . 2 ⊢ (∀𝑥 ∈ ℝ ∃𝑛 ∈ 𝑍 𝑥 ≤ 𝑛 ↔ sup(𝑍, ℝ*, < ) = +∞) |
| 37 | 28, 36 | sylib 218 | 1 ⊢ (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3903 ifcif 4476 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 supcsup 9330 ℝcr 11008 1c1 11010 + caddc 11012 +∞cpnf 11146 ℝ*cxr 11148 < clt 11149 ≤ cle 11150 ℤcz 12471 ℤ≥cuz 12735 ⌊cfl 13694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-fl 13696 |
| This theorem is referenced by: climrecl 15490 climge0 15491 caurcvg 15584 caucvg 15586 mbflimsup 25565 limsupvaluz 45699 ioodvbdlimc1lem2 45923 ioodvbdlimc2lem 45925 |
| Copyright terms: Public domain | W3C validator |