Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uzsup | Structured version Visualization version GIF version |
Description: An upper set of integers is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
Ref | Expression |
---|---|
uzsup.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
uzsup | ⊢ (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 486 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℤ) | |
2 | flcl 13249 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℤ) | |
3 | 2 | peano2zd 12164 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℤ) |
4 | id 22 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℤ) | |
5 | ifcl 4456 | . . . . . . 7 ⊢ ((((⌊‘𝑥) + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ) | |
6 | 3, 4, 5 | syl2anr 600 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ) |
7 | zre 12059 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
8 | reflcl 13250 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ) | |
9 | peano2re 10884 | . . . . . . . 8 ⊢ ((⌊‘𝑥) ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ) |
11 | max1 12654 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) | |
12 | 7, 10, 11 | syl2an 599 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) |
13 | eluz2 12323 | . . . . . 6 ⊢ (if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))) | |
14 | 1, 6, 12, 13 | syl3anbrc 1344 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ (ℤ≥‘𝑀)) |
15 | uzsup.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
16 | 14, 15 | eleqtrrdi 2844 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ 𝑍) |
17 | simpr 488 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
18 | 10 | adantl 485 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((⌊‘𝑥) + 1) ∈ ℝ) |
19 | 6 | zred 12161 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℝ) |
20 | fllep1 13255 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1)) | |
21 | 20 | adantl 485 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ ((⌊‘𝑥) + 1)) |
22 | max2 12656 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → ((⌊‘𝑥) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) | |
23 | 7, 10, 22 | syl2an 599 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((⌊‘𝑥) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) |
24 | 17, 18, 19, 21, 23 | letrd 10868 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) |
25 | breq2 5031 | . . . . 5 ⊢ (𝑛 = if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) → (𝑥 ≤ 𝑛 ↔ 𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))) | |
26 | 25 | rspcev 3524 | . . . 4 ⊢ ((if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ 𝑍 ∧ 𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) → ∃𝑛 ∈ 𝑍 𝑥 ≤ 𝑛) |
27 | 16, 24, 26 | syl2anc 587 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ∃𝑛 ∈ 𝑍 𝑥 ≤ 𝑛) |
28 | 27 | ralrimiva 3096 | . 2 ⊢ (𝑀 ∈ ℤ → ∀𝑥 ∈ ℝ ∃𝑛 ∈ 𝑍 𝑥 ≤ 𝑛) |
29 | uzssz 12338 | . . . . . 6 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
30 | 15, 29 | eqsstri 3909 | . . . . 5 ⊢ 𝑍 ⊆ ℤ |
31 | zssre 12062 | . . . . 5 ⊢ ℤ ⊆ ℝ | |
32 | 30, 31 | sstri 3884 | . . . 4 ⊢ 𝑍 ⊆ ℝ |
33 | ressxr 10756 | . . . 4 ⊢ ℝ ⊆ ℝ* | |
34 | 32, 33 | sstri 3884 | . . 3 ⊢ 𝑍 ⊆ ℝ* |
35 | supxrunb1 12788 | . . 3 ⊢ (𝑍 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑛 ∈ 𝑍 𝑥 ≤ 𝑛 ↔ sup(𝑍, ℝ*, < ) = +∞)) | |
36 | 34, 35 | ax-mp 5 | . 2 ⊢ (∀𝑥 ∈ ℝ ∃𝑛 ∈ 𝑍 𝑥 ≤ 𝑛 ↔ sup(𝑍, ℝ*, < ) = +∞) |
37 | 28, 36 | sylib 221 | 1 ⊢ (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ∀wral 3053 ∃wrex 3054 ⊆ wss 3841 ifcif 4411 class class class wbr 5027 ‘cfv 6333 (class class class)co 7164 supcsup 8970 ℝcr 10607 1c1 10609 + caddc 10611 +∞cpnf 10743 ℝ*cxr 10745 < clt 10746 ≤ cle 10747 ℤcz 12055 ℤ≥cuz 12317 ⌊cfl 13244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 ax-pre-sup 10686 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-er 8313 df-en 8549 df-dom 8550 df-sdom 8551 df-sup 8972 df-inf 8973 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-nn 11710 df-n0 11970 df-z 12056 df-uz 12318 df-fl 13246 |
This theorem is referenced by: climrecl 15023 climge0 15024 caurcvg 15119 caucvg 15121 mbflimsup 24411 limsupvaluz 42775 ioodvbdlimc1lem2 42999 ioodvbdlimc2lem 43001 |
Copyright terms: Public domain | W3C validator |