MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzsup Structured version   Visualization version   GIF version

Theorem uzsup 13903
Description: An upper set of integers is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.)
Hypothesis
Ref Expression
uzsup.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzsup (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)

Proof of Theorem uzsup
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℤ)
2 flcl 13835 . . . . . . . 8 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℤ)
32peano2zd 12725 . . . . . . 7 (𝑥 ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℤ)
4 id 22 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
5 ifcl 4571 . . . . . . 7 ((((⌊‘𝑥) + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ)
63, 4, 5syl2anr 597 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ)
7 zre 12617 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
8 reflcl 13836 . . . . . . . 8 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
9 peano2re 11434 . . . . . . . 8 ((⌊‘𝑥) ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ)
108, 9syl 17 . . . . . . 7 (𝑥 ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ)
11 max1 13227 . . . . . . 7 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))
127, 10, 11syl2an 596 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))
13 eluz2 12884 . . . . . 6 (if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)))
141, 6, 12, 13syl3anbrc 1344 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ (ℤ𝑀))
15 uzsup.1 . . . . 5 𝑍 = (ℤ𝑀)
1614, 15eleqtrrdi 2852 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ 𝑍)
17 simpr 484 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
1810adantl 481 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((⌊‘𝑥) + 1) ∈ ℝ)
196zred 12722 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℝ)
20 fllep1 13841 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1))
2120adantl 481 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ ((⌊‘𝑥) + 1))
22 max2 13229 . . . . . 6 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → ((⌊‘𝑥) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))
237, 10, 22syl2an 596 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((⌊‘𝑥) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))
2417, 18, 19, 21, 23letrd 11418 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))
25 breq2 5147 . . . . 5 (𝑛 = if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) → (𝑥𝑛𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)))
2625rspcev 3622 . . . 4 ((if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ 𝑍𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) → ∃𝑛𝑍 𝑥𝑛)
2716, 24, 26syl2anc 584 . . 3 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ∃𝑛𝑍 𝑥𝑛)
2827ralrimiva 3146 . 2 (𝑀 ∈ ℤ → ∀𝑥 ∈ ℝ ∃𝑛𝑍 𝑥𝑛)
29 uzssz 12899 . . . . . 6 (ℤ𝑀) ⊆ ℤ
3015, 29eqsstri 4030 . . . . 5 𝑍 ⊆ ℤ
31 zssre 12620 . . . . 5 ℤ ⊆ ℝ
3230, 31sstri 3993 . . . 4 𝑍 ⊆ ℝ
33 ressxr 11305 . . . 4 ℝ ⊆ ℝ*
3432, 33sstri 3993 . . 3 𝑍 ⊆ ℝ*
35 supxrunb1 13361 . . 3 (𝑍 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑛𝑍 𝑥𝑛 ↔ sup(𝑍, ℝ*, < ) = +∞))
3634, 35ax-mp 5 . 2 (∀𝑥 ∈ ℝ ∃𝑛𝑍 𝑥𝑛 ↔ sup(𝑍, ℝ*, < ) = +∞)
3728, 36sylib 218 1 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  wss 3951  ifcif 4525   class class class wbr 5143  cfv 6561  (class class class)co 7431  supcsup 9480  cr 11154  1c1 11156   + caddc 11158  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296  cz 12613  cuz 12878  cfl 13830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fl 13832
This theorem is referenced by:  climrecl  15619  climge0  15620  caurcvg  15713  caucvg  15715  mbflimsup  25701  limsupvaluz  45723  ioodvbdlimc1lem2  45947  ioodvbdlimc2lem  45949
  Copyright terms: Public domain W3C validator