| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzsup | Structured version Visualization version GIF version | ||
| Description: An upper set of integers is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
| Ref | Expression |
|---|---|
| uzsup.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| uzsup | ⊢ (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℤ) | |
| 2 | flcl 13764 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℤ) | |
| 3 | 2 | peano2zd 12648 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℤ) |
| 4 | id 22 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℤ) | |
| 5 | ifcl 4537 | . . . . . . 7 ⊢ ((((⌊‘𝑥) + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ) | |
| 6 | 3, 4, 5 | syl2anr 597 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ) |
| 7 | zre 12540 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 8 | reflcl 13765 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ) | |
| 9 | peano2re 11354 | . . . . . . . 8 ⊢ ((⌊‘𝑥) ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ) | |
| 10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ) |
| 11 | max1 13152 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) | |
| 12 | 7, 10, 11 | syl2an 596 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) |
| 13 | eluz2 12806 | . . . . . 6 ⊢ (if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))) | |
| 14 | 1, 6, 12, 13 | syl3anbrc 1344 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ (ℤ≥‘𝑀)) |
| 15 | uzsup.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 16 | 14, 15 | eleqtrrdi 2840 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ 𝑍) |
| 17 | simpr 484 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
| 18 | 10 | adantl 481 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((⌊‘𝑥) + 1) ∈ ℝ) |
| 19 | 6 | zred 12645 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℝ) |
| 20 | fllep1 13770 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1)) | |
| 21 | 20 | adantl 481 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ ((⌊‘𝑥) + 1)) |
| 22 | max2 13154 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → ((⌊‘𝑥) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) | |
| 23 | 7, 10, 22 | syl2an 596 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((⌊‘𝑥) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) |
| 24 | 17, 18, 19, 21, 23 | letrd 11338 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) |
| 25 | breq2 5114 | . . . . 5 ⊢ (𝑛 = if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) → (𝑥 ≤ 𝑛 ↔ 𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))) | |
| 26 | 25 | rspcev 3591 | . . . 4 ⊢ ((if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ 𝑍 ∧ 𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) → ∃𝑛 ∈ 𝑍 𝑥 ≤ 𝑛) |
| 27 | 16, 24, 26 | syl2anc 584 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ∃𝑛 ∈ 𝑍 𝑥 ≤ 𝑛) |
| 28 | 27 | ralrimiva 3126 | . 2 ⊢ (𝑀 ∈ ℤ → ∀𝑥 ∈ ℝ ∃𝑛 ∈ 𝑍 𝑥 ≤ 𝑛) |
| 29 | uzssz 12821 | . . . . . 6 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
| 30 | 15, 29 | eqsstri 3996 | . . . . 5 ⊢ 𝑍 ⊆ ℤ |
| 31 | zssre 12543 | . . . . 5 ⊢ ℤ ⊆ ℝ | |
| 32 | 30, 31 | sstri 3959 | . . . 4 ⊢ 𝑍 ⊆ ℝ |
| 33 | ressxr 11225 | . . . 4 ⊢ ℝ ⊆ ℝ* | |
| 34 | 32, 33 | sstri 3959 | . . 3 ⊢ 𝑍 ⊆ ℝ* |
| 35 | supxrunb1 13286 | . . 3 ⊢ (𝑍 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑛 ∈ 𝑍 𝑥 ≤ 𝑛 ↔ sup(𝑍, ℝ*, < ) = +∞)) | |
| 36 | 34, 35 | ax-mp 5 | . 2 ⊢ (∀𝑥 ∈ ℝ ∃𝑛 ∈ 𝑍 𝑥 ≤ 𝑛 ↔ sup(𝑍, ℝ*, < ) = +∞) |
| 37 | 28, 36 | sylib 218 | 1 ⊢ (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ⊆ wss 3917 ifcif 4491 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 supcsup 9398 ℝcr 11074 1c1 11076 + caddc 11078 +∞cpnf 11212 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 ℤcz 12536 ℤ≥cuz 12800 ⌊cfl 13759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fl 13761 |
| This theorem is referenced by: climrecl 15556 climge0 15557 caurcvg 15650 caucvg 15652 mbflimsup 25574 limsupvaluz 45713 ioodvbdlimc1lem2 45937 ioodvbdlimc2lem 45939 |
| Copyright terms: Public domain | W3C validator |