MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzsup Structured version   Visualization version   GIF version

Theorem uzsup 13768
Description: An upper set of integers is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.)
Hypothesis
Ref Expression
uzsup.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzsup (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)

Proof of Theorem uzsup
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℤ)
2 flcl 13700 . . . . . . . 8 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℤ)
32peano2zd 12610 . . . . . . 7 (𝑥 ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℤ)
4 id 22 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
5 ifcl 4531 . . . . . . 7 ((((⌊‘𝑥) + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ)
63, 4, 5syl2anr 597 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ)
7 zre 12503 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
8 reflcl 13701 . . . . . . . 8 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
9 peano2re 11328 . . . . . . . 8 ((⌊‘𝑥) ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ)
108, 9syl 17 . . . . . . 7 (𝑥 ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ)
11 max1 13104 . . . . . . 7 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))
127, 10, 11syl2an 596 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))
13 eluz2 12769 . . . . . 6 (if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)))
141, 6, 12, 13syl3anbrc 1343 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ (ℤ𝑀))
15 uzsup.1 . . . . 5 𝑍 = (ℤ𝑀)
1614, 15eleqtrrdi 2849 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ 𝑍)
17 simpr 485 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
1810adantl 482 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((⌊‘𝑥) + 1) ∈ ℝ)
196zred 12607 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℝ)
20 fllep1 13706 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1))
2120adantl 482 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ ((⌊‘𝑥) + 1))
22 max2 13106 . . . . . 6 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → ((⌊‘𝑥) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))
237, 10, 22syl2an 596 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((⌊‘𝑥) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))
2417, 18, 19, 21, 23letrd 11312 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))
25 breq2 5109 . . . . 5 (𝑛 = if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) → (𝑥𝑛𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)))
2625rspcev 3581 . . . 4 ((if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ 𝑍𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) → ∃𝑛𝑍 𝑥𝑛)
2716, 24, 26syl2anc 584 . . 3 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ∃𝑛𝑍 𝑥𝑛)
2827ralrimiva 3143 . 2 (𝑀 ∈ ℤ → ∀𝑥 ∈ ℝ ∃𝑛𝑍 𝑥𝑛)
29 uzssz 12784 . . . . . 6 (ℤ𝑀) ⊆ ℤ
3015, 29eqsstri 3978 . . . . 5 𝑍 ⊆ ℤ
31 zssre 12506 . . . . 5 ℤ ⊆ ℝ
3230, 31sstri 3953 . . . 4 𝑍 ⊆ ℝ
33 ressxr 11199 . . . 4 ℝ ⊆ ℝ*
3432, 33sstri 3953 . . 3 𝑍 ⊆ ℝ*
35 supxrunb1 13238 . . 3 (𝑍 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑛𝑍 𝑥𝑛 ↔ sup(𝑍, ℝ*, < ) = +∞))
3634, 35ax-mp 5 . 2 (∀𝑥 ∈ ℝ ∃𝑛𝑍 𝑥𝑛 ↔ sup(𝑍, ℝ*, < ) = +∞)
3728, 36sylib 217 1 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  wss 3910  ifcif 4486   class class class wbr 5105  cfv 6496  (class class class)co 7357  supcsup 9376  cr 11050  1c1 11052   + caddc 11054  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  cz 12499  cuz 12763  cfl 13695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fl 13697
This theorem is referenced by:  climrecl  15465  climge0  15466  caurcvg  15561  caucvg  15563  mbflimsup  25030  limsupvaluz  43939  ioodvbdlimc1lem2  44163  ioodvbdlimc2lem  44165
  Copyright terms: Public domain W3C validator