![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzsup | Structured version Visualization version GIF version |
Description: An upper set of integers is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
Ref | Expression |
---|---|
uzsup.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
uzsup | ⊢ (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℤ) | |
2 | flcl 13831 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℤ) | |
3 | 2 | peano2zd 12722 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℤ) |
4 | id 22 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℤ) | |
5 | ifcl 4575 | . . . . . . 7 ⊢ ((((⌊‘𝑥) + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ) | |
6 | 3, 4, 5 | syl2anr 597 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ) |
7 | zre 12614 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
8 | reflcl 13832 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ) | |
9 | peano2re 11431 | . . . . . . . 8 ⊢ ((⌊‘𝑥) ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ) |
11 | max1 13223 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) | |
12 | 7, 10, 11 | syl2an 596 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) |
13 | eluz2 12881 | . . . . . 6 ⊢ (if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))) | |
14 | 1, 6, 12, 13 | syl3anbrc 1342 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ (ℤ≥‘𝑀)) |
15 | uzsup.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
16 | 14, 15 | eleqtrrdi 2849 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ 𝑍) |
17 | simpr 484 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
18 | 10 | adantl 481 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((⌊‘𝑥) + 1) ∈ ℝ) |
19 | 6 | zred 12719 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℝ) |
20 | fllep1 13837 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1)) | |
21 | 20 | adantl 481 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ ((⌊‘𝑥) + 1)) |
22 | max2 13225 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → ((⌊‘𝑥) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) | |
23 | 7, 10, 22 | syl2an 596 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((⌊‘𝑥) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) |
24 | 17, 18, 19, 21, 23 | letrd 11415 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) |
25 | breq2 5151 | . . . . 5 ⊢ (𝑛 = if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) → (𝑥 ≤ 𝑛 ↔ 𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))) | |
26 | 25 | rspcev 3621 | . . . 4 ⊢ ((if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ 𝑍 ∧ 𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) → ∃𝑛 ∈ 𝑍 𝑥 ≤ 𝑛) |
27 | 16, 24, 26 | syl2anc 584 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ∃𝑛 ∈ 𝑍 𝑥 ≤ 𝑛) |
28 | 27 | ralrimiva 3143 | . 2 ⊢ (𝑀 ∈ ℤ → ∀𝑥 ∈ ℝ ∃𝑛 ∈ 𝑍 𝑥 ≤ 𝑛) |
29 | uzssz 12896 | . . . . . 6 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
30 | 15, 29 | eqsstri 4029 | . . . . 5 ⊢ 𝑍 ⊆ ℤ |
31 | zssre 12617 | . . . . 5 ⊢ ℤ ⊆ ℝ | |
32 | 30, 31 | sstri 4004 | . . . 4 ⊢ 𝑍 ⊆ ℝ |
33 | ressxr 11302 | . . . 4 ⊢ ℝ ⊆ ℝ* | |
34 | 32, 33 | sstri 4004 | . . 3 ⊢ 𝑍 ⊆ ℝ* |
35 | supxrunb1 13357 | . . 3 ⊢ (𝑍 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑛 ∈ 𝑍 𝑥 ≤ 𝑛 ↔ sup(𝑍, ℝ*, < ) = +∞)) | |
36 | 34, 35 | ax-mp 5 | . 2 ⊢ (∀𝑥 ∈ ℝ ∃𝑛 ∈ 𝑍 𝑥 ≤ 𝑛 ↔ sup(𝑍, ℝ*, < ) = +∞) |
37 | 28, 36 | sylib 218 | 1 ⊢ (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ∃wrex 3067 ⊆ wss 3962 ifcif 4530 class class class wbr 5147 ‘cfv 6562 (class class class)co 7430 supcsup 9477 ℝcr 11151 1c1 11153 + caddc 11155 +∞cpnf 11289 ℝ*cxr 11291 < clt 11292 ≤ cle 11293 ℤcz 12610 ℤ≥cuz 12875 ⌊cfl 13826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-inf 9480 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-n0 12524 df-z 12611 df-uz 12876 df-fl 13828 |
This theorem is referenced by: climrecl 15615 climge0 15616 caurcvg 15709 caucvg 15711 mbflimsup 25714 limsupvaluz 45663 ioodvbdlimc1lem2 45887 ioodvbdlimc2lem 45889 |
Copyright terms: Public domain | W3C validator |