![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzsup | Structured version Visualization version GIF version |
Description: An upper set of integers is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
Ref | Expression |
---|---|
uzsup.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
uzsup | ⊢ (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℤ) | |
2 | flcl 13706 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℤ) | |
3 | 2 | peano2zd 12615 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℤ) |
4 | id 22 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℤ) | |
5 | ifcl 4532 | . . . . . . 7 ⊢ ((((⌊‘𝑥) + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ) | |
6 | 3, 4, 5 | syl2anr 598 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ) |
7 | zre 12508 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
8 | reflcl 13707 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ) | |
9 | peano2re 11333 | . . . . . . . 8 ⊢ ((⌊‘𝑥) ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ) |
11 | max1 13110 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) | |
12 | 7, 10, 11 | syl2an 597 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) |
13 | eluz2 12774 | . . . . . 6 ⊢ (if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))) | |
14 | 1, 6, 12, 13 | syl3anbrc 1344 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ (ℤ≥‘𝑀)) |
15 | uzsup.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
16 | 14, 15 | eleqtrrdi 2845 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ 𝑍) |
17 | simpr 486 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
18 | 10 | adantl 483 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((⌊‘𝑥) + 1) ∈ ℝ) |
19 | 6 | zred 12612 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℝ) |
20 | fllep1 13712 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1)) | |
21 | 20 | adantl 483 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ ((⌊‘𝑥) + 1)) |
22 | max2 13112 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → ((⌊‘𝑥) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) | |
23 | 7, 10, 22 | syl2an 597 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((⌊‘𝑥) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) |
24 | 17, 18, 19, 21, 23 | letrd 11317 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) |
25 | breq2 5110 | . . . . 5 ⊢ (𝑛 = if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) → (𝑥 ≤ 𝑛 ↔ 𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))) | |
26 | 25 | rspcev 3580 | . . . 4 ⊢ ((if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ 𝑍 ∧ 𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) → ∃𝑛 ∈ 𝑍 𝑥 ≤ 𝑛) |
27 | 16, 24, 26 | syl2anc 585 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ∃𝑛 ∈ 𝑍 𝑥 ≤ 𝑛) |
28 | 27 | ralrimiva 3140 | . 2 ⊢ (𝑀 ∈ ℤ → ∀𝑥 ∈ ℝ ∃𝑛 ∈ 𝑍 𝑥 ≤ 𝑛) |
29 | uzssz 12789 | . . . . . 6 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
30 | 15, 29 | eqsstri 3979 | . . . . 5 ⊢ 𝑍 ⊆ ℤ |
31 | zssre 12511 | . . . . 5 ⊢ ℤ ⊆ ℝ | |
32 | 30, 31 | sstri 3954 | . . . 4 ⊢ 𝑍 ⊆ ℝ |
33 | ressxr 11204 | . . . 4 ⊢ ℝ ⊆ ℝ* | |
34 | 32, 33 | sstri 3954 | . . 3 ⊢ 𝑍 ⊆ ℝ* |
35 | supxrunb1 13244 | . . 3 ⊢ (𝑍 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑛 ∈ 𝑍 𝑥 ≤ 𝑛 ↔ sup(𝑍, ℝ*, < ) = +∞)) | |
36 | 34, 35 | ax-mp 5 | . 2 ⊢ (∀𝑥 ∈ ℝ ∃𝑛 ∈ 𝑍 𝑥 ≤ 𝑛 ↔ sup(𝑍, ℝ*, < ) = +∞) |
37 | 28, 36 | sylib 217 | 1 ⊢ (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3061 ∃wrex 3070 ⊆ wss 3911 ifcif 4487 class class class wbr 5106 ‘cfv 6497 (class class class)co 7358 supcsup 9381 ℝcr 11055 1c1 11057 + caddc 11059 +∞cpnf 11191 ℝ*cxr 11193 < clt 11194 ≤ cle 11195 ℤcz 12504 ℤ≥cuz 12768 ⌊cfl 13701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 ax-pre-sup 11134 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-sup 9383 df-inf 9384 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-nn 12159 df-n0 12419 df-z 12505 df-uz 12769 df-fl 13703 |
This theorem is referenced by: climrecl 15471 climge0 15472 caurcvg 15567 caucvg 15569 mbflimsup 25046 limsupvaluz 44035 ioodvbdlimc1lem2 44259 ioodvbdlimc2lem 44261 |
Copyright terms: Public domain | W3C validator |