Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzsup Structured version   Visualization version   GIF version

Theorem uzsup 13230
 Description: An upper set of integers is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.)
Hypothesis
Ref Expression
uzsup.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzsup (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)

Proof of Theorem uzsup
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 485 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℤ)
2 flcl 13164 . . . . . . . 8 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℤ)
32peano2zd 12089 . . . . . . 7 (𝑥 ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℤ)
4 id 22 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
5 ifcl 4510 . . . . . . 7 ((((⌊‘𝑥) + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ)
63, 4, 5syl2anr 598 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ)
7 zre 11984 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
8 reflcl 13165 . . . . . . . 8 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
9 peano2re 10812 . . . . . . . 8 ((⌊‘𝑥) ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ)
108, 9syl 17 . . . . . . 7 (𝑥 ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ)
11 max1 12577 . . . . . . 7 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))
127, 10, 11syl2an 597 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))
13 eluz2 12248 . . . . . 6 (if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)))
141, 6, 12, 13syl3anbrc 1339 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ (ℤ𝑀))
15 uzsup.1 . . . . 5 𝑍 = (ℤ𝑀)
1614, 15eleqtrrdi 2924 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ 𝑍)
17 simpr 487 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
1810adantl 484 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((⌊‘𝑥) + 1) ∈ ℝ)
196zred 12086 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℝ)
20 fllep1 13170 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1))
2120adantl 484 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ ((⌊‘𝑥) + 1))
22 max2 12579 . . . . . 6 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → ((⌊‘𝑥) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))
237, 10, 22syl2an 597 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((⌊‘𝑥) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))
2417, 18, 19, 21, 23letrd 10796 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))
25 breq2 5069 . . . . 5 (𝑛 = if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) → (𝑥𝑛𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)))
2625rspcev 3622 . . . 4 ((if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ 𝑍𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) → ∃𝑛𝑍 𝑥𝑛)
2716, 24, 26syl2anc 586 . . 3 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ∃𝑛𝑍 𝑥𝑛)
2827ralrimiva 3182 . 2 (𝑀 ∈ ℤ → ∀𝑥 ∈ ℝ ∃𝑛𝑍 𝑥𝑛)
29 uzssz 12263 . . . . . 6 (ℤ𝑀) ⊆ ℤ
3015, 29eqsstri 4000 . . . . 5 𝑍 ⊆ ℤ
31 zssre 11987 . . . . 5 ℤ ⊆ ℝ
3230, 31sstri 3975 . . . 4 𝑍 ⊆ ℝ
33 ressxr 10684 . . . 4 ℝ ⊆ ℝ*
3432, 33sstri 3975 . . 3 𝑍 ⊆ ℝ*
35 supxrunb1 12711 . . 3 (𝑍 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑛𝑍 𝑥𝑛 ↔ sup(𝑍, ℝ*, < ) = +∞))
3634, 35ax-mp 5 . 2 (∀𝑥 ∈ ℝ ∃𝑛𝑍 𝑥𝑛 ↔ sup(𝑍, ℝ*, < ) = +∞)
3728, 36sylib 220 1 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1533   ∈ wcel 2110  ∀wral 3138  ∃wrex 3139   ⊆ wss 3935  ifcif 4466   class class class wbr 5065  ‘cfv 6354  (class class class)co 7155  supcsup 8903  ℝcr 10535  1c1 10537   + caddc 10539  +∞cpnf 10671  ℝ*cxr 10673   < clt 10674   ≤ cle 10675  ℤcz 11980  ℤ≥cuz 12242  ⌊cfl 13159 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-fl 13161 This theorem is referenced by:  climrecl  14939  climge0  14940  caurcvg  15032  caucvg  15034  mbflimsup  24266  limsupvaluz  41989  ioodvbdlimc1lem2  42217  ioodvbdlimc2lem  42219
 Copyright terms: Public domain W3C validator