MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzsup Structured version   Visualization version   GIF version

Theorem uzsup 13878
Description: An upper set of integers is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.)
Hypothesis
Ref Expression
uzsup.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzsup (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)

Proof of Theorem uzsup
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℤ)
2 flcl 13810 . . . . . . . 8 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℤ)
32peano2zd 12698 . . . . . . 7 (𝑥 ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℤ)
4 id 22 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
5 ifcl 4546 . . . . . . 7 ((((⌊‘𝑥) + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ)
63, 4, 5syl2anr 597 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ)
7 zre 12590 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
8 reflcl 13811 . . . . . . . 8 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
9 peano2re 11406 . . . . . . . 8 ((⌊‘𝑥) ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ)
108, 9syl 17 . . . . . . 7 (𝑥 ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ)
11 max1 13199 . . . . . . 7 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))
127, 10, 11syl2an 596 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))
13 eluz2 12856 . . . . . 6 (if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)))
141, 6, 12, 13syl3anbrc 1344 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ (ℤ𝑀))
15 uzsup.1 . . . . 5 𝑍 = (ℤ𝑀)
1614, 15eleqtrrdi 2845 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ 𝑍)
17 simpr 484 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
1810adantl 481 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((⌊‘𝑥) + 1) ∈ ℝ)
196zred 12695 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℝ)
20 fllep1 13816 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1))
2120adantl 481 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ ((⌊‘𝑥) + 1))
22 max2 13201 . . . . . 6 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → ((⌊‘𝑥) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))
237, 10, 22syl2an 596 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((⌊‘𝑥) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))
2417, 18, 19, 21, 23letrd 11390 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))
25 breq2 5123 . . . . 5 (𝑛 = if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) → (𝑥𝑛𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)))
2625rspcev 3601 . . . 4 ((if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ 𝑍𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) → ∃𝑛𝑍 𝑥𝑛)
2716, 24, 26syl2anc 584 . . 3 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ∃𝑛𝑍 𝑥𝑛)
2827ralrimiva 3132 . 2 (𝑀 ∈ ℤ → ∀𝑥 ∈ ℝ ∃𝑛𝑍 𝑥𝑛)
29 uzssz 12871 . . . . . 6 (ℤ𝑀) ⊆ ℤ
3015, 29eqsstri 4005 . . . . 5 𝑍 ⊆ ℤ
31 zssre 12593 . . . . 5 ℤ ⊆ ℝ
3230, 31sstri 3968 . . . 4 𝑍 ⊆ ℝ
33 ressxr 11277 . . . 4 ℝ ⊆ ℝ*
3432, 33sstri 3968 . . 3 𝑍 ⊆ ℝ*
35 supxrunb1 13333 . . 3 (𝑍 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑛𝑍 𝑥𝑛 ↔ sup(𝑍, ℝ*, < ) = +∞))
3634, 35ax-mp 5 . 2 (∀𝑥 ∈ ℝ ∃𝑛𝑍 𝑥𝑛 ↔ sup(𝑍, ℝ*, < ) = +∞)
3728, 36sylib 218 1 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  wss 3926  ifcif 4500   class class class wbr 5119  cfv 6530  (class class class)co 7403  supcsup 9450  cr 11126  1c1 11128   + caddc 11130  +∞cpnf 11264  *cxr 11266   < clt 11267  cle 11268  cz 12586  cuz 12850  cfl 13805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9452  df-inf 9453  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-n0 12500  df-z 12587  df-uz 12851  df-fl 13807
This theorem is referenced by:  climrecl  15597  climge0  15598  caurcvg  15691  caucvg  15693  mbflimsup  25617  limsupvaluz  45685  ioodvbdlimc1lem2  45909  ioodvbdlimc2lem  45911
  Copyright terms: Public domain W3C validator