Proof of Theorem 2lgsoddprm
Step | Hyp | Ref
| Expression |
1 | | eldifi 3282 |
. . . . . . . . 9
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
ℙ) |
2 | | prmz 12252 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
3 | 1, 2 | syl 14 |
. . . . . . . 8
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
ℤ) |
4 | | 8nn 9152 |
. . . . . . . . 9
⊢ 8 ∈
ℕ |
5 | 4 | a1i 9 |
. . . . . . . 8
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 8 ∈ ℕ) |
6 | 3, 5 | zmodcld 10419 |
. . . . . . 7
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (𝑃 mod 8) ∈
ℕ0) |
7 | 6 | nn0zd 9440 |
. . . . . 6
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (𝑃 mod 8) ∈
ℤ) |
8 | | 1zzd 9347 |
. . . . . 6
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 1 ∈ ℤ) |
9 | | zdceq 9395 |
. . . . . 6
⊢ (((𝑃 mod 8) ∈ ℤ ∧ 1
∈ ℤ) → DECID (𝑃 mod 8) = 1) |
10 | 7, 8, 9 | syl2anc 411 |
. . . . 5
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ DECID (𝑃 mod 8) = 1) |
11 | | 7nn 9151 |
. . . . . . . 8
⊢ 7 ∈
ℕ |
12 | 11 | nnzi 9341 |
. . . . . . 7
⊢ 7 ∈
ℤ |
13 | 12 | a1i 9 |
. . . . . 6
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 7 ∈ ℤ) |
14 | | zdceq 9395 |
. . . . . 6
⊢ (((𝑃 mod 8) ∈ ℤ ∧ 7
∈ ℤ) → DECID (𝑃 mod 8) = 7) |
15 | 7, 13, 14 | syl2anc 411 |
. . . . 5
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ DECID (𝑃 mod 8) = 7) |
16 | | dcor 937 |
. . . . 5
⊢
(DECID (𝑃 mod 8) = 1 → (DECID
(𝑃 mod 8) = 7 →
DECID ((𝑃
mod 8) = 1 ∨ (𝑃 mod 8) =
7))) |
17 | 10, 15, 16 | sylc 62 |
. . . 4
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ DECID ((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7)) |
18 | | elprg 3639 |
. . . . . 6
⊢ ((𝑃 mod 8) ∈
ℕ0 → ((𝑃 mod 8) ∈ {1, 7} ↔ ((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7))) |
19 | 6, 18 | syl 14 |
. . . . 5
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ((𝑃 mod 8) ∈
{1, 7} ↔ ((𝑃 mod 8) =
1 ∨ (𝑃 mod 8) =
7))) |
20 | 19 | dcbid 839 |
. . . 4
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (DECID (𝑃 mod 8) ∈ {1, 7} ↔
DECID ((𝑃
mod 8) = 1 ∨ (𝑃 mod 8) =
7))) |
21 | 17, 20 | mpbird 167 |
. . 3
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ DECID (𝑃 mod 8) ∈ {1, 7}) |
22 | | 2lgs 15261 |
. . . 4
⊢ (𝑃 ∈ ℙ → ((2
/L 𝑃) = 1
↔ (𝑃 mod 8) ∈ {1,
7})) |
23 | 1, 22 | syl 14 |
. . 3
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7})) |
24 | | simpl 109 |
. . . . . 6
⊢ (((2
/L 𝑃) = 1
∧ ((𝑃 mod 8) ∈ {1,
7} ∧ 𝑃 ∈ (ℙ
∖ {2}))) → (2 /L 𝑃) = 1) |
25 | | eqcom 2195 |
. . . . . . . . . 10
⊢ (1 =
(-1↑(((𝑃↑2)
− 1) / 8)) ↔ (-1↑(((𝑃↑2) − 1) / 8)) =
1) |
26 | 25 | a1i 9 |
. . . . . . . . 9
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (1 = (-1↑(((𝑃↑2) − 1) / 8)) ↔
(-1↑(((𝑃↑2)
− 1) / 8)) = 1)) |
27 | | nnoddn2prm 12401 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (𝑃 ∈ ℕ
∧ ¬ 2 ∥ 𝑃)) |
28 | | nnz 9339 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℤ) |
29 | 28 | anim1i 340 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℕ ∧ ¬ 2
∥ 𝑃) → (𝑃 ∈ ℤ ∧ ¬ 2
∥ 𝑃)) |
30 | 27, 29 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (𝑃 ∈ ℤ
∧ ¬ 2 ∥ 𝑃)) |
31 | | sqoddm1div8z 12030 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℤ ∧ ¬ 2
∥ 𝑃) → (((𝑃↑2) − 1) / 8) ∈
ℤ) |
32 | 30, 31 | syl 14 |
. . . . . . . . . 10
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (((𝑃↑2) −
1) / 8) ∈ ℤ) |
33 | | m1exp1 12045 |
. . . . . . . . . 10
⊢ ((((𝑃↑2) − 1) / 8) ∈
ℤ → ((-1↑(((𝑃↑2) − 1) / 8)) = 1 ↔ 2
∥ (((𝑃↑2)
− 1) / 8))) |
34 | 32, 33 | syl 14 |
. . . . . . . . 9
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ((-1↑(((𝑃↑2) − 1) / 8)) = 1 ↔ 2
∥ (((𝑃↑2)
− 1) / 8))) |
35 | | 2lgsoddprmlem4 15269 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℤ ∧ ¬ 2
∥ 𝑃) → (2
∥ (((𝑃↑2)
− 1) / 8) ↔ (𝑃
mod 8) ∈ {1, 7})) |
36 | 30, 35 | syl 14 |
. . . . . . . . 9
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (2 ∥ (((𝑃↑2) − 1) / 8) ↔ (𝑃 mod 8) ∈ {1,
7})) |
37 | 26, 34, 36 | 3bitrd 214 |
. . . . . . . 8
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (1 = (-1↑(((𝑃↑2) − 1) / 8)) ↔ (𝑃 mod 8) ∈ {1,
7})) |
38 | 37 | biimparc 299 |
. . . . . . 7
⊢ (((𝑃 mod 8) ∈ {1, 7} ∧
𝑃 ∈ (ℙ ∖
{2})) → 1 = (-1↑(((𝑃↑2) − 1) / 8))) |
39 | 38 | adantl 277 |
. . . . . 6
⊢ (((2
/L 𝑃) = 1
∧ ((𝑃 mod 8) ∈ {1,
7} ∧ 𝑃 ∈ (ℙ
∖ {2}))) → 1 = (-1↑(((𝑃↑2) − 1) / 8))) |
40 | 24, 39 | eqtrd 2226 |
. . . . 5
⊢ (((2
/L 𝑃) = 1
∧ ((𝑃 mod 8) ∈ {1,
7} ∧ 𝑃 ∈ (ℙ
∖ {2}))) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))) |
41 | 40 | exp32 365 |
. . . 4
⊢ ((2
/L 𝑃) = 1
→ ((𝑃 mod 8) ∈
{1, 7} → (𝑃 ∈
(ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) /
8))))) |
42 | | 2z 9348 |
. . . . . . . 8
⊢ 2 ∈
ℤ |
43 | | lgscl1 15180 |
. . . . . . . 8
⊢ ((2
∈ ℤ ∧ 𝑃
∈ ℤ) → (2 /L 𝑃) ∈ {-1, 0, 1}) |
44 | 42, 3, 43 | sylancr 414 |
. . . . . . 7
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (2 /L 𝑃) ∈ {-1, 0, 1}) |
45 | | eltpg 3664 |
. . . . . . . 8
⊢ ((2
/L 𝑃)
∈ {-1, 0, 1} → ((2 /L 𝑃) ∈ {-1, 0, 1} ↔ ((2
/L 𝑃) =
-1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1))) |
46 | 44, 45 | syl 14 |
. . . . . . 7
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ((2 /L 𝑃) ∈ {-1, 0, 1} ↔ ((2
/L 𝑃) =
-1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1))) |
47 | 44, 46 | mpbid 147 |
. . . . . 6
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2
/L 𝑃) =
1)) |
48 | | simpl 109 |
. . . . . . . . . 10
⊢ (((2
/L 𝑃) =
-1 ∧ (𝑃 ∈ (ℙ
∖ {2}) ∧ ¬ (𝑃
mod 8) ∈ {1, 7})) → (2 /L 𝑃) = -1) |
49 | 36 | notbid 668 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (¬ 2 ∥ (((𝑃↑2) − 1) / 8) ↔ ¬ (𝑃 mod 8) ∈ {1,
7})) |
50 | 49 | biimpar 297 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ ¬ (𝑃 mod 8)
∈ {1, 7}) → ¬ 2 ∥ (((𝑃↑2) − 1) / 8)) |
51 | | m1expo 12044 |
. . . . . . . . . . . . 13
⊢
(((((𝑃↑2)
− 1) / 8) ∈ ℤ ∧ ¬ 2 ∥ (((𝑃↑2) − 1) / 8)) →
(-1↑(((𝑃↑2)
− 1) / 8)) = -1) |
52 | 32, 50, 51 | syl2an2r 595 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ ¬ (𝑃 mod 8)
∈ {1, 7}) → (-1↑(((𝑃↑2) − 1) / 8)) =
-1) |
53 | 52 | eqcomd 2199 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ ¬ (𝑃 mod 8)
∈ {1, 7}) → -1 = (-1↑(((𝑃↑2) − 1) / 8))) |
54 | 53 | adantl 277 |
. . . . . . . . . 10
⊢ (((2
/L 𝑃) =
-1 ∧ (𝑃 ∈ (ℙ
∖ {2}) ∧ ¬ (𝑃
mod 8) ∈ {1, 7})) → -1 = (-1↑(((𝑃↑2) − 1) / 8))) |
55 | 48, 54 | eqtrd 2226 |
. . . . . . . . 9
⊢ (((2
/L 𝑃) =
-1 ∧ (𝑃 ∈ (ℙ
∖ {2}) ∧ ¬ (𝑃
mod 8) ∈ {1, 7})) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))) |
56 | 55 | a1d 22 |
. . . . . . . 8
⊢ (((2
/L 𝑃) =
-1 ∧ (𝑃 ∈ (ℙ
∖ {2}) ∧ ¬ (𝑃
mod 8) ∈ {1, 7})) → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) /
8)))) |
57 | 56 | exp32 365 |
. . . . . . 7
⊢ ((2
/L 𝑃) =
-1 → (𝑃 ∈
(ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2
/L 𝑃) = 1
→ (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) /
8)))))) |
58 | | eldifsn 3746 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ (ℙ ∖ {2})
↔ (𝑃 ∈ ℙ
∧ 𝑃 ≠
2)) |
59 | | simpr 110 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 𝑃 ≠ 2) |
60 | 59 | necomd 2450 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 2 ≠ 𝑃) |
61 | 58, 60 | sylbi 121 |
. . . . . . . . . 10
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 2 ≠ 𝑃) |
62 | | 2prm 12268 |
. . . . . . . . . . 11
⊢ 2 ∈
ℙ |
63 | | prmrp 12286 |
. . . . . . . . . . 11
⊢ ((2
∈ ℙ ∧ 𝑃
∈ ℙ) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃)) |
64 | 62, 1, 63 | sylancr 414 |
. . . . . . . . . 10
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ((2 gcd 𝑃) = 1
↔ 2 ≠ 𝑃)) |
65 | 61, 64 | mpbird 167 |
. . . . . . . . 9
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (2 gcd 𝑃) =
1) |
66 | | lgsne0 15195 |
. . . . . . . . . 10
⊢ ((2
∈ ℤ ∧ 𝑃
∈ ℤ) → ((2 /L 𝑃) ≠ 0 ↔ (2 gcd 𝑃) = 1)) |
67 | 42, 3, 66 | sylancr 414 |
. . . . . . . . 9
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ((2 /L 𝑃) ≠ 0 ↔ (2 gcd 𝑃) = 1)) |
68 | 65, 67 | mpbird 167 |
. . . . . . . 8
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (2 /L 𝑃) ≠ 0) |
69 | | eqneqall 2374 |
. . . . . . . 8
⊢ ((2
/L 𝑃) = 0
→ ((2 /L 𝑃) ≠ 0 → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2
/L 𝑃) = 1
→ (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) /
8)))))) |
70 | 68, 69 | syl5 32 |
. . . . . . 7
⊢ ((2
/L 𝑃) = 0
→ (𝑃 ∈ (ℙ
∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2
/L 𝑃) = 1
→ (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) /
8)))))) |
71 | | pm2.24 622 |
. . . . . . . 8
⊢ ((2
/L 𝑃) = 1
→ (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) /
8)))) |
72 | 71 | 2a1d 23 |
. . . . . . 7
⊢ ((2
/L 𝑃) = 1
→ (𝑃 ∈ (ℙ
∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2
/L 𝑃) = 1
→ (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) /
8)))))) |
73 | 57, 70, 72 | 3jaoi 1314 |
. . . . . 6
⊢ (((2
/L 𝑃) =
-1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1) → (𝑃 ∈ (ℙ ∖ {2}) → (¬
(𝑃 mod 8) ∈ {1, 7}
→ (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) /
8)))))) |
74 | 47, 73 | mpcom 36 |
. . . . 5
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (¬ (𝑃 mod 8)
∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) /
8))))) |
75 | 74 | com13 80 |
. . . 4
⊢ (¬ (2
/L 𝑃) = 1
→ (¬ (𝑃 mod 8)
∈ {1, 7} → (𝑃
∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) /
8))))) |
76 | 41, 75 | bijadc 883 |
. . 3
⊢
(DECID (𝑃 mod 8) ∈ {1, 7} → (((2
/L 𝑃) = 1
↔ (𝑃 mod 8) ∈ {1,
7}) → (𝑃 ∈
(ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) /
8))))) |
77 | 21, 23, 76 | sylc 62 |
. 2
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (𝑃 ∈ (ℙ
∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))) |
78 | 77 | pm2.43i 49 |
1
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))) |