Proof of Theorem 2lgsoddprm
| Step | Hyp | Ref
| Expression |
| 1 | | eldifi 3285 |
. . . . . . . . 9
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
ℙ) |
| 2 | | prmz 12279 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
| 3 | 1, 2 | syl 14 |
. . . . . . . 8
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
ℤ) |
| 4 | | 8nn 9158 |
. . . . . . . . 9
⊢ 8 ∈
ℕ |
| 5 | 4 | a1i 9 |
. . . . . . . 8
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 8 ∈ ℕ) |
| 6 | 3, 5 | zmodcld 10437 |
. . . . . . 7
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (𝑃 mod 8) ∈
ℕ0) |
| 7 | 6 | nn0zd 9446 |
. . . . . 6
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (𝑃 mod 8) ∈
ℤ) |
| 8 | | 1zzd 9353 |
. . . . . 6
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 1 ∈ ℤ) |
| 9 | | zdceq 9401 |
. . . . . 6
⊢ (((𝑃 mod 8) ∈ ℤ ∧ 1
∈ ℤ) → DECID (𝑃 mod 8) = 1) |
| 10 | 7, 8, 9 | syl2anc 411 |
. . . . 5
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ DECID (𝑃 mod 8) = 1) |
| 11 | | 7nn 9157 |
. . . . . . . 8
⊢ 7 ∈
ℕ |
| 12 | 11 | nnzi 9347 |
. . . . . . 7
⊢ 7 ∈
ℤ |
| 13 | 12 | a1i 9 |
. . . . . 6
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 7 ∈ ℤ) |
| 14 | | zdceq 9401 |
. . . . . 6
⊢ (((𝑃 mod 8) ∈ ℤ ∧ 7
∈ ℤ) → DECID (𝑃 mod 8) = 7) |
| 15 | 7, 13, 14 | syl2anc 411 |
. . . . 5
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ DECID (𝑃 mod 8) = 7) |
| 16 | | dcor 937 |
. . . . 5
⊢
(DECID (𝑃 mod 8) = 1 → (DECID
(𝑃 mod 8) = 7 →
DECID ((𝑃
mod 8) = 1 ∨ (𝑃 mod 8) =
7))) |
| 17 | 10, 15, 16 | sylc 62 |
. . . 4
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ DECID ((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7)) |
| 18 | | elprg 3642 |
. . . . . 6
⊢ ((𝑃 mod 8) ∈
ℕ0 → ((𝑃 mod 8) ∈ {1, 7} ↔ ((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7))) |
| 19 | 6, 18 | syl 14 |
. . . . 5
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ((𝑃 mod 8) ∈
{1, 7} ↔ ((𝑃 mod 8) =
1 ∨ (𝑃 mod 8) =
7))) |
| 20 | 19 | dcbid 839 |
. . . 4
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (DECID (𝑃 mod 8) ∈ {1, 7} ↔
DECID ((𝑃
mod 8) = 1 ∨ (𝑃 mod 8) =
7))) |
| 21 | 17, 20 | mpbird 167 |
. . 3
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ DECID (𝑃 mod 8) ∈ {1, 7}) |
| 22 | | 2lgs 15345 |
. . . 4
⊢ (𝑃 ∈ ℙ → ((2
/L 𝑃) = 1
↔ (𝑃 mod 8) ∈ {1,
7})) |
| 23 | 1, 22 | syl 14 |
. . 3
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7})) |
| 24 | | simpl 109 |
. . . . . 6
⊢ (((2
/L 𝑃) = 1
∧ ((𝑃 mod 8) ∈ {1,
7} ∧ 𝑃 ∈ (ℙ
∖ {2}))) → (2 /L 𝑃) = 1) |
| 25 | | eqcom 2198 |
. . . . . . . . . 10
⊢ (1 =
(-1↑(((𝑃↑2)
− 1) / 8)) ↔ (-1↑(((𝑃↑2) − 1) / 8)) =
1) |
| 26 | 25 | a1i 9 |
. . . . . . . . 9
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (1 = (-1↑(((𝑃↑2) − 1) / 8)) ↔
(-1↑(((𝑃↑2)
− 1) / 8)) = 1)) |
| 27 | | nnoddn2prm 12429 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (𝑃 ∈ ℕ
∧ ¬ 2 ∥ 𝑃)) |
| 28 | | nnz 9345 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℤ) |
| 29 | 28 | anim1i 340 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℕ ∧ ¬ 2
∥ 𝑃) → (𝑃 ∈ ℤ ∧ ¬ 2
∥ 𝑃)) |
| 30 | 27, 29 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (𝑃 ∈ ℤ
∧ ¬ 2 ∥ 𝑃)) |
| 31 | | sqoddm1div8z 12051 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℤ ∧ ¬ 2
∥ 𝑃) → (((𝑃↑2) − 1) / 8) ∈
ℤ) |
| 32 | 30, 31 | syl 14 |
. . . . . . . . . 10
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (((𝑃↑2) −
1) / 8) ∈ ℤ) |
| 33 | | m1exp1 12066 |
. . . . . . . . . 10
⊢ ((((𝑃↑2) − 1) / 8) ∈
ℤ → ((-1↑(((𝑃↑2) − 1) / 8)) = 1 ↔ 2
∥ (((𝑃↑2)
− 1) / 8))) |
| 34 | 32, 33 | syl 14 |
. . . . . . . . 9
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ((-1↑(((𝑃↑2) − 1) / 8)) = 1 ↔ 2
∥ (((𝑃↑2)
− 1) / 8))) |
| 35 | | 2lgsoddprmlem4 15353 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℤ ∧ ¬ 2
∥ 𝑃) → (2
∥ (((𝑃↑2)
− 1) / 8) ↔ (𝑃
mod 8) ∈ {1, 7})) |
| 36 | 30, 35 | syl 14 |
. . . . . . . . 9
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (2 ∥ (((𝑃↑2) − 1) / 8) ↔ (𝑃 mod 8) ∈ {1,
7})) |
| 37 | 26, 34, 36 | 3bitrd 214 |
. . . . . . . 8
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (1 = (-1↑(((𝑃↑2) − 1) / 8)) ↔ (𝑃 mod 8) ∈ {1,
7})) |
| 38 | 37 | biimparc 299 |
. . . . . . 7
⊢ (((𝑃 mod 8) ∈ {1, 7} ∧
𝑃 ∈ (ℙ ∖
{2})) → 1 = (-1↑(((𝑃↑2) − 1) / 8))) |
| 39 | 38 | adantl 277 |
. . . . . 6
⊢ (((2
/L 𝑃) = 1
∧ ((𝑃 mod 8) ∈ {1,
7} ∧ 𝑃 ∈ (ℙ
∖ {2}))) → 1 = (-1↑(((𝑃↑2) − 1) / 8))) |
| 40 | 24, 39 | eqtrd 2229 |
. . . . 5
⊢ (((2
/L 𝑃) = 1
∧ ((𝑃 mod 8) ∈ {1,
7} ∧ 𝑃 ∈ (ℙ
∖ {2}))) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))) |
| 41 | 40 | exp32 365 |
. . . 4
⊢ ((2
/L 𝑃) = 1
→ ((𝑃 mod 8) ∈
{1, 7} → (𝑃 ∈
(ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) /
8))))) |
| 42 | | 2z 9354 |
. . . . . . . 8
⊢ 2 ∈
ℤ |
| 43 | | lgscl1 15264 |
. . . . . . . 8
⊢ ((2
∈ ℤ ∧ 𝑃
∈ ℤ) → (2 /L 𝑃) ∈ {-1, 0, 1}) |
| 44 | 42, 3, 43 | sylancr 414 |
. . . . . . 7
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (2 /L 𝑃) ∈ {-1, 0, 1}) |
| 45 | | eltpg 3667 |
. . . . . . . 8
⊢ ((2
/L 𝑃)
∈ {-1, 0, 1} → ((2 /L 𝑃) ∈ {-1, 0, 1} ↔ ((2
/L 𝑃) =
-1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1))) |
| 46 | 44, 45 | syl 14 |
. . . . . . 7
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ((2 /L 𝑃) ∈ {-1, 0, 1} ↔ ((2
/L 𝑃) =
-1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1))) |
| 47 | 44, 46 | mpbid 147 |
. . . . . 6
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2
/L 𝑃) =
1)) |
| 48 | | simpl 109 |
. . . . . . . . . 10
⊢ (((2
/L 𝑃) =
-1 ∧ (𝑃 ∈ (ℙ
∖ {2}) ∧ ¬ (𝑃
mod 8) ∈ {1, 7})) → (2 /L 𝑃) = -1) |
| 49 | 36 | notbid 668 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (¬ 2 ∥ (((𝑃↑2) − 1) / 8) ↔ ¬ (𝑃 mod 8) ∈ {1,
7})) |
| 50 | 49 | biimpar 297 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ ¬ (𝑃 mod 8)
∈ {1, 7}) → ¬ 2 ∥ (((𝑃↑2) − 1) / 8)) |
| 51 | | m1expo 12065 |
. . . . . . . . . . . . 13
⊢
(((((𝑃↑2)
− 1) / 8) ∈ ℤ ∧ ¬ 2 ∥ (((𝑃↑2) − 1) / 8)) →
(-1↑(((𝑃↑2)
− 1) / 8)) = -1) |
| 52 | 32, 50, 51 | syl2an2r 595 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ ¬ (𝑃 mod 8)
∈ {1, 7}) → (-1↑(((𝑃↑2) − 1) / 8)) =
-1) |
| 53 | 52 | eqcomd 2202 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ ¬ (𝑃 mod 8)
∈ {1, 7}) → -1 = (-1↑(((𝑃↑2) − 1) / 8))) |
| 54 | 53 | adantl 277 |
. . . . . . . . . 10
⊢ (((2
/L 𝑃) =
-1 ∧ (𝑃 ∈ (ℙ
∖ {2}) ∧ ¬ (𝑃
mod 8) ∈ {1, 7})) → -1 = (-1↑(((𝑃↑2) − 1) / 8))) |
| 55 | 48, 54 | eqtrd 2229 |
. . . . . . . . 9
⊢ (((2
/L 𝑃) =
-1 ∧ (𝑃 ∈ (ℙ
∖ {2}) ∧ ¬ (𝑃
mod 8) ∈ {1, 7})) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))) |
| 56 | 55 | a1d 22 |
. . . . . . . 8
⊢ (((2
/L 𝑃) =
-1 ∧ (𝑃 ∈ (ℙ
∖ {2}) ∧ ¬ (𝑃
mod 8) ∈ {1, 7})) → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) /
8)))) |
| 57 | 56 | exp32 365 |
. . . . . . 7
⊢ ((2
/L 𝑃) =
-1 → (𝑃 ∈
(ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2
/L 𝑃) = 1
→ (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) /
8)))))) |
| 58 | | eldifsn 3749 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ (ℙ ∖ {2})
↔ (𝑃 ∈ ℙ
∧ 𝑃 ≠
2)) |
| 59 | | simpr 110 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 𝑃 ≠ 2) |
| 60 | 59 | necomd 2453 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 2 ≠ 𝑃) |
| 61 | 58, 60 | sylbi 121 |
. . . . . . . . . 10
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 2 ≠ 𝑃) |
| 62 | | 2prm 12295 |
. . . . . . . . . . 11
⊢ 2 ∈
ℙ |
| 63 | | prmrp 12313 |
. . . . . . . . . . 11
⊢ ((2
∈ ℙ ∧ 𝑃
∈ ℙ) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃)) |
| 64 | 62, 1, 63 | sylancr 414 |
. . . . . . . . . 10
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ((2 gcd 𝑃) = 1
↔ 2 ≠ 𝑃)) |
| 65 | 61, 64 | mpbird 167 |
. . . . . . . . 9
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (2 gcd 𝑃) =
1) |
| 66 | | lgsne0 15279 |
. . . . . . . . . 10
⊢ ((2
∈ ℤ ∧ 𝑃
∈ ℤ) → ((2 /L 𝑃) ≠ 0 ↔ (2 gcd 𝑃) = 1)) |
| 67 | 42, 3, 66 | sylancr 414 |
. . . . . . . . 9
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ((2 /L 𝑃) ≠ 0 ↔ (2 gcd 𝑃) = 1)) |
| 68 | 65, 67 | mpbird 167 |
. . . . . . . 8
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (2 /L 𝑃) ≠ 0) |
| 69 | | eqneqall 2377 |
. . . . . . . 8
⊢ ((2
/L 𝑃) = 0
→ ((2 /L 𝑃) ≠ 0 → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2
/L 𝑃) = 1
→ (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) /
8)))))) |
| 70 | 68, 69 | syl5 32 |
. . . . . . 7
⊢ ((2
/L 𝑃) = 0
→ (𝑃 ∈ (ℙ
∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2
/L 𝑃) = 1
→ (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) /
8)))))) |
| 71 | | pm2.24 622 |
. . . . . . . 8
⊢ ((2
/L 𝑃) = 1
→ (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) /
8)))) |
| 72 | 71 | 2a1d 23 |
. . . . . . 7
⊢ ((2
/L 𝑃) = 1
→ (𝑃 ∈ (ℙ
∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2
/L 𝑃) = 1
→ (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) /
8)))))) |
| 73 | 57, 70, 72 | 3jaoi 1314 |
. . . . . 6
⊢ (((2
/L 𝑃) =
-1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1) → (𝑃 ∈ (ℙ ∖ {2}) → (¬
(𝑃 mod 8) ∈ {1, 7}
→ (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) /
8)))))) |
| 74 | 47, 73 | mpcom 36 |
. . . . 5
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (¬ (𝑃 mod 8)
∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) /
8))))) |
| 75 | 74 | com13 80 |
. . . 4
⊢ (¬ (2
/L 𝑃) = 1
→ (¬ (𝑃 mod 8)
∈ {1, 7} → (𝑃
∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) /
8))))) |
| 76 | 41, 75 | bijadc 883 |
. . 3
⊢
(DECID (𝑃 mod 8) ∈ {1, 7} → (((2
/L 𝑃) = 1
↔ (𝑃 mod 8) ∈ {1,
7}) → (𝑃 ∈
(ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) /
8))))) |
| 77 | 21, 23, 76 | sylc 62 |
. 2
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (𝑃 ∈ (ℙ
∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))) |
| 78 | 77 | pm2.43i 49 |
1
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))) |