| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mod2xi | GIF version | ||
| Description: Double exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) |
| Ref | Expression |
|---|---|
| modxai.1 | ⊢ 𝑁 ∈ ℕ |
| modxai.2 | ⊢ 𝐴 ∈ ℕ |
| modxai.3 | ⊢ 𝐵 ∈ ℕ0 |
| modxai.4 | ⊢ 𝐷 ∈ ℤ |
| modxai.5 | ⊢ 𝐾 ∈ ℕ0 |
| modxai.6 | ⊢ 𝑀 ∈ ℕ0 |
| mod2xi.9 | ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) |
| mod2xi.7 | ⊢ (2 · 𝐵) = 𝐸 |
| mod2xi.8 | ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐾) |
| Ref | Expression |
|---|---|
| mod2xi | ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modxai.1 | . 2 ⊢ 𝑁 ∈ ℕ | |
| 2 | modxai.2 | . 2 ⊢ 𝐴 ∈ ℕ | |
| 3 | modxai.3 | . 2 ⊢ 𝐵 ∈ ℕ0 | |
| 4 | modxai.4 | . 2 ⊢ 𝐷 ∈ ℤ | |
| 5 | modxai.5 | . 2 ⊢ 𝐾 ∈ ℕ0 | |
| 6 | modxai.6 | . 2 ⊢ 𝑀 ∈ ℕ0 | |
| 7 | mod2xi.9 | . 2 ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) | |
| 8 | 3 | nn0cni 9260 | . . . 4 ⊢ 𝐵 ∈ ℂ |
| 9 | 8 | 2timesi 9119 | . . 3 ⊢ (2 · 𝐵) = (𝐵 + 𝐵) |
| 10 | mod2xi.7 | . . 3 ⊢ (2 · 𝐵) = 𝐸 | |
| 11 | 9, 10 | eqtr3i 2219 | . 2 ⊢ (𝐵 + 𝐵) = 𝐸 |
| 12 | mod2xi.8 | . 2 ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐾) | |
| 13 | 1, 2, 3, 4, 5, 6, 3, 5, 7, 7, 11, 12 | modxai 12563 | 1 ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 (class class class)co 5922 + caddc 7882 · cmul 7884 ℕcn 8989 2c2 9040 ℕ0cn0 9248 ℤcz 9325 mod cmo 10401 ↑cexp 10617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8601 df-ap 8608 df-div 8699 df-inn 8990 df-2 9048 df-n0 9249 df-z 9326 df-uz 9601 df-q 9693 df-rp 9728 df-fl 10347 df-mod 10402 df-seqfrec 10527 df-exp 10618 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |