MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pleid Structured version   Visualization version   GIF version

Theorem pleid 17381
Description: Utility theorem: self-referencing, index-independent form of df-ple 17286. (Contributed by NM, 9-Nov-2012.) (Revised by AV, 9-Sep-2021.)
Assertion
Ref Expression
pleid le = Slot (le‘ndx)

Proof of Theorem pleid
StepHypRef Expression
1 df-ple 17286 . 2 le = Slot 10
2 10nn 12745 . 2 10 ∈ ℕ
31, 2ndxid 17199 1 le = Slot (le‘ndx)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  cfv 6554  0cc0 11158  1c1 11159  cdc 12729  Slot cslot 17183  ndxcnx 17195  lecple 17273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-ltxr 11303  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-dec 12730  df-slot 17184  df-ndx 17196  df-ple 17286
This theorem is referenced by:  otpsle  17393  ressle  17394  odrngle  17422  prdsle  17477  imasle  17538  oduleval  18314  0pos  18346  isposix  18350  ipolerval  18557  cnfldle  21354  cnfldleOLD  21367  znle  21530  thlle  21694  thlleOLD  21695  opsrle  22054  oppgle  32830  prstcleval  48389  prstclevalOLD  48390
  Copyright terms: Public domain W3C validator