| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdsprime | Structured version Visualization version GIF version | ||
| Description: If 𝑀 divides a prime, then 𝑀 is either the prime or one. (Contributed by Scott Fenton, 8-Apr-2014.) |
| Ref | Expression |
|---|---|
| dvdsprime | ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 ↔ (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm2 16603 | . . 3 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑃 → (𝑚 = 1 ∨ 𝑚 = 𝑃)))) | |
| 2 | breq1 5098 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑚 ∥ 𝑃 ↔ 𝑀 ∥ 𝑃)) | |
| 3 | eqeq1 2737 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑚 = 1 ↔ 𝑀 = 1)) | |
| 4 | eqeq1 2737 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑚 = 𝑃 ↔ 𝑀 = 𝑃)) | |
| 5 | 3, 4 | orbi12d 918 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ((𝑚 = 1 ∨ 𝑚 = 𝑃) ↔ (𝑀 = 1 ∨ 𝑀 = 𝑃))) |
| 6 | orcom 870 | . . . . . . 7 ⊢ ((𝑀 = 1 ∨ 𝑀 = 𝑃) ↔ (𝑀 = 𝑃 ∨ 𝑀 = 1)) | |
| 7 | 5, 6 | bitrdi 287 | . . . . . 6 ⊢ (𝑚 = 𝑀 → ((𝑚 = 1 ∨ 𝑚 = 𝑃) ↔ (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
| 8 | 2, 7 | imbi12d 344 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝑚 ∥ 𝑃 → (𝑚 = 1 ∨ 𝑚 = 𝑃)) ↔ (𝑀 ∥ 𝑃 → (𝑀 = 𝑃 ∨ 𝑀 = 1)))) |
| 9 | 8 | rspccva 3573 | . . . 4 ⊢ ((∀𝑚 ∈ ℕ (𝑚 ∥ 𝑃 → (𝑚 = 1 ∨ 𝑚 = 𝑃)) ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 → (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
| 10 | 9 | adantll 714 | . . 3 ⊢ (((𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑃 → (𝑚 = 1 ∨ 𝑚 = 𝑃))) ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 → (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
| 11 | 1, 10 | sylanb 581 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 → (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
| 12 | prmz 16596 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
| 13 | iddvds 16190 | . . . . . 6 ⊢ (𝑃 ∈ ℤ → 𝑃 ∥ 𝑃) | |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∥ 𝑃) |
| 15 | 14 | adantr 480 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → 𝑃 ∥ 𝑃) |
| 16 | breq1 5098 | . . . 4 ⊢ (𝑀 = 𝑃 → (𝑀 ∥ 𝑃 ↔ 𝑃 ∥ 𝑃)) | |
| 17 | 15, 16 | syl5ibrcom 247 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 = 𝑃 → 𝑀 ∥ 𝑃)) |
| 18 | 1dvds 16191 | . . . . . 6 ⊢ (𝑃 ∈ ℤ → 1 ∥ 𝑃) | |
| 19 | 12, 18 | syl 17 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 1 ∥ 𝑃) |
| 20 | 19 | adantr 480 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → 1 ∥ 𝑃) |
| 21 | breq1 5098 | . . . 4 ⊢ (𝑀 = 1 → (𝑀 ∥ 𝑃 ↔ 1 ∥ 𝑃)) | |
| 22 | 20, 21 | syl5ibrcom 247 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 = 1 → 𝑀 ∥ 𝑃)) |
| 23 | 17, 22 | jaod 859 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → ((𝑀 = 𝑃 ∨ 𝑀 = 1) → 𝑀 ∥ 𝑃)) |
| 24 | 11, 23 | impbid 212 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 ↔ (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ∀wral 3049 class class class wbr 5095 ‘cfv 6489 1c1 11017 ℕcn 12135 2c2 12190 ℤcz 12478 ℤ≥cuz 12742 ∥ cdvds 16173 ℙcprime 16592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-sup 9336 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-n0 12392 df-z 12479 df-uz 12743 df-rp 12901 df-seq 13919 df-exp 13979 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 df-abs 15153 df-dvds 16174 df-prm 16593 |
| This theorem is referenced by: prm2orodd 16612 pythagtriplem4 16741 odcau 19526 prmcyg 19816 prmgrpsimpgd 20038 rtprmirr 26707 2lgs 27355 aks6d1c2p2 42222 goldbachthlem2 47660 fmtnofac1 47684 oddprmALTV 47801 |
| Copyright terms: Public domain | W3C validator |