| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdsprime | Structured version Visualization version GIF version | ||
| Description: If 𝑀 divides a prime, then 𝑀 is either the prime or one. (Contributed by Scott Fenton, 8-Apr-2014.) |
| Ref | Expression |
|---|---|
| dvdsprime | ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 ↔ (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm2 16658 | . . 3 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑃 → (𝑚 = 1 ∨ 𝑚 = 𝑃)))) | |
| 2 | breq1 5112 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑚 ∥ 𝑃 ↔ 𝑀 ∥ 𝑃)) | |
| 3 | eqeq1 2734 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑚 = 1 ↔ 𝑀 = 1)) | |
| 4 | eqeq1 2734 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑚 = 𝑃 ↔ 𝑀 = 𝑃)) | |
| 5 | 3, 4 | orbi12d 918 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ((𝑚 = 1 ∨ 𝑚 = 𝑃) ↔ (𝑀 = 1 ∨ 𝑀 = 𝑃))) |
| 6 | orcom 870 | . . . . . . 7 ⊢ ((𝑀 = 1 ∨ 𝑀 = 𝑃) ↔ (𝑀 = 𝑃 ∨ 𝑀 = 1)) | |
| 7 | 5, 6 | bitrdi 287 | . . . . . 6 ⊢ (𝑚 = 𝑀 → ((𝑚 = 1 ∨ 𝑚 = 𝑃) ↔ (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
| 8 | 2, 7 | imbi12d 344 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝑚 ∥ 𝑃 → (𝑚 = 1 ∨ 𝑚 = 𝑃)) ↔ (𝑀 ∥ 𝑃 → (𝑀 = 𝑃 ∨ 𝑀 = 1)))) |
| 9 | 8 | rspccva 3590 | . . . 4 ⊢ ((∀𝑚 ∈ ℕ (𝑚 ∥ 𝑃 → (𝑚 = 1 ∨ 𝑚 = 𝑃)) ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 → (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
| 10 | 9 | adantll 714 | . . 3 ⊢ (((𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑃 → (𝑚 = 1 ∨ 𝑚 = 𝑃))) ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 → (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
| 11 | 1, 10 | sylanb 581 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 → (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
| 12 | prmz 16651 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
| 13 | iddvds 16245 | . . . . . 6 ⊢ (𝑃 ∈ ℤ → 𝑃 ∥ 𝑃) | |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∥ 𝑃) |
| 15 | 14 | adantr 480 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → 𝑃 ∥ 𝑃) |
| 16 | breq1 5112 | . . . 4 ⊢ (𝑀 = 𝑃 → (𝑀 ∥ 𝑃 ↔ 𝑃 ∥ 𝑃)) | |
| 17 | 15, 16 | syl5ibrcom 247 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 = 𝑃 → 𝑀 ∥ 𝑃)) |
| 18 | 1dvds 16246 | . . . . . 6 ⊢ (𝑃 ∈ ℤ → 1 ∥ 𝑃) | |
| 19 | 12, 18 | syl 17 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 1 ∥ 𝑃) |
| 20 | 19 | adantr 480 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → 1 ∥ 𝑃) |
| 21 | breq1 5112 | . . . 4 ⊢ (𝑀 = 1 → (𝑀 ∥ 𝑃 ↔ 1 ∥ 𝑃)) | |
| 22 | 20, 21 | syl5ibrcom 247 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 = 1 → 𝑀 ∥ 𝑃)) |
| 23 | 17, 22 | jaod 859 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → ((𝑀 = 𝑃 ∨ 𝑀 = 1) → 𝑀 ∥ 𝑃)) |
| 24 | 11, 23 | impbid 212 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 ↔ (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3045 class class class wbr 5109 ‘cfv 6513 1c1 11075 ℕcn 12187 2c2 12242 ℤcz 12535 ℤ≥cuz 12799 ∥ cdvds 16228 ℙcprime 16647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-n0 12449 df-z 12536 df-uz 12800 df-rp 12958 df-seq 13973 df-exp 14033 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-dvds 16229 df-prm 16648 |
| This theorem is referenced by: prm2orodd 16667 pythagtriplem4 16796 odcau 19540 prmcyg 19830 prmgrpsimpgd 20052 rtprmirr 26676 2lgs 27324 aks6d1c2p2 42102 goldbachthlem2 47537 fmtnofac1 47561 oddprmALTV 47678 |
| Copyright terms: Public domain | W3C validator |