| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdsprime | Structured version Visualization version GIF version | ||
| Description: If 𝑀 divides a prime, then 𝑀 is either the prime or one. (Contributed by Scott Fenton, 8-Apr-2014.) |
| Ref | Expression |
|---|---|
| dvdsprime | ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 ↔ (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm2 16585 | . . 3 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑃 → (𝑚 = 1 ∨ 𝑚 = 𝑃)))) | |
| 2 | breq1 5092 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑚 ∥ 𝑃 ↔ 𝑀 ∥ 𝑃)) | |
| 3 | eqeq1 2734 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑚 = 1 ↔ 𝑀 = 1)) | |
| 4 | eqeq1 2734 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑚 = 𝑃 ↔ 𝑀 = 𝑃)) | |
| 5 | 3, 4 | orbi12d 918 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ((𝑚 = 1 ∨ 𝑚 = 𝑃) ↔ (𝑀 = 1 ∨ 𝑀 = 𝑃))) |
| 6 | orcom 870 | . . . . . . 7 ⊢ ((𝑀 = 1 ∨ 𝑀 = 𝑃) ↔ (𝑀 = 𝑃 ∨ 𝑀 = 1)) | |
| 7 | 5, 6 | bitrdi 287 | . . . . . 6 ⊢ (𝑚 = 𝑀 → ((𝑚 = 1 ∨ 𝑚 = 𝑃) ↔ (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
| 8 | 2, 7 | imbi12d 344 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝑚 ∥ 𝑃 → (𝑚 = 1 ∨ 𝑚 = 𝑃)) ↔ (𝑀 ∥ 𝑃 → (𝑀 = 𝑃 ∨ 𝑀 = 1)))) |
| 9 | 8 | rspccva 3574 | . . . 4 ⊢ ((∀𝑚 ∈ ℕ (𝑚 ∥ 𝑃 → (𝑚 = 1 ∨ 𝑚 = 𝑃)) ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 → (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
| 10 | 9 | adantll 714 | . . 3 ⊢ (((𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑃 → (𝑚 = 1 ∨ 𝑚 = 𝑃))) ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 → (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
| 11 | 1, 10 | sylanb 581 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 → (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
| 12 | prmz 16578 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
| 13 | iddvds 16172 | . . . . . 6 ⊢ (𝑃 ∈ ℤ → 𝑃 ∥ 𝑃) | |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∥ 𝑃) |
| 15 | 14 | adantr 480 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → 𝑃 ∥ 𝑃) |
| 16 | breq1 5092 | . . . 4 ⊢ (𝑀 = 𝑃 → (𝑀 ∥ 𝑃 ↔ 𝑃 ∥ 𝑃)) | |
| 17 | 15, 16 | syl5ibrcom 247 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 = 𝑃 → 𝑀 ∥ 𝑃)) |
| 18 | 1dvds 16173 | . . . . . 6 ⊢ (𝑃 ∈ ℤ → 1 ∥ 𝑃) | |
| 19 | 12, 18 | syl 17 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 1 ∥ 𝑃) |
| 20 | 19 | adantr 480 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → 1 ∥ 𝑃) |
| 21 | breq1 5092 | . . . 4 ⊢ (𝑀 = 1 → (𝑀 ∥ 𝑃 ↔ 1 ∥ 𝑃)) | |
| 22 | 20, 21 | syl5ibrcom 247 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 = 1 → 𝑀 ∥ 𝑃)) |
| 23 | 17, 22 | jaod 859 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → ((𝑀 = 𝑃 ∨ 𝑀 = 1) → 𝑀 ∥ 𝑃)) |
| 24 | 11, 23 | impbid 212 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 ↔ (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2110 ∀wral 3045 class class class wbr 5089 ‘cfv 6477 1c1 10999 ℕcn 12117 2c2 12172 ℤcz 12460 ℤ≥cuz 12724 ∥ cdvds 16155 ℙcprime 16574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-z 12461 df-uz 12725 df-rp 12883 df-seq 13901 df-exp 13961 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-dvds 16156 df-prm 16575 |
| This theorem is referenced by: prm2orodd 16594 pythagtriplem4 16723 odcau 19509 prmcyg 19799 prmgrpsimpgd 20021 rtprmirr 26690 2lgs 27338 aks6d1c2p2 42131 goldbachthlem2 47556 fmtnofac1 47580 oddprmALTV 47697 |
| Copyright terms: Public domain | W3C validator |