Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsprime Structured version   Visualization version   GIF version

Theorem dvdsprime 16076
 Description: If 𝑀 divides a prime, then 𝑀 is either the prime or one. (Contributed by Scott Fenton, 8-Apr-2014.)
Assertion
Ref Expression
dvdsprime ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀𝑃 ↔ (𝑀 = 𝑃𝑀 = 1)))

Proof of Theorem dvdsprime
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 isprm2 16071 . . 3 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑚 ∈ ℕ (𝑚𝑃 → (𝑚 = 1 ∨ 𝑚 = 𝑃))))
2 breq1 5036 . . . . . 6 (𝑚 = 𝑀 → (𝑚𝑃𝑀𝑃))
3 eqeq1 2763 . . . . . . . 8 (𝑚 = 𝑀 → (𝑚 = 1 ↔ 𝑀 = 1))
4 eqeq1 2763 . . . . . . . 8 (𝑚 = 𝑀 → (𝑚 = 𝑃𝑀 = 𝑃))
53, 4orbi12d 917 . . . . . . 7 (𝑚 = 𝑀 → ((𝑚 = 1 ∨ 𝑚 = 𝑃) ↔ (𝑀 = 1 ∨ 𝑀 = 𝑃)))
6 orcom 868 . . . . . . 7 ((𝑀 = 1 ∨ 𝑀 = 𝑃) ↔ (𝑀 = 𝑃𝑀 = 1))
75, 6bitrdi 290 . . . . . 6 (𝑚 = 𝑀 → ((𝑚 = 1 ∨ 𝑚 = 𝑃) ↔ (𝑀 = 𝑃𝑀 = 1)))
82, 7imbi12d 349 . . . . 5 (𝑚 = 𝑀 → ((𝑚𝑃 → (𝑚 = 1 ∨ 𝑚 = 𝑃)) ↔ (𝑀𝑃 → (𝑀 = 𝑃𝑀 = 1))))
98rspccva 3541 . . . 4 ((∀𝑚 ∈ ℕ (𝑚𝑃 → (𝑚 = 1 ∨ 𝑚 = 𝑃)) ∧ 𝑀 ∈ ℕ) → (𝑀𝑃 → (𝑀 = 𝑃𝑀 = 1)))
109adantll 714 . . 3 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑚 ∈ ℕ (𝑚𝑃 → (𝑚 = 1 ∨ 𝑚 = 𝑃))) ∧ 𝑀 ∈ ℕ) → (𝑀𝑃 → (𝑀 = 𝑃𝑀 = 1)))
111, 10sylanb 585 . 2 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀𝑃 → (𝑀 = 𝑃𝑀 = 1)))
12 prmz 16064 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
13 iddvds 15664 . . . . . 6 (𝑃 ∈ ℤ → 𝑃𝑃)
1412, 13syl 17 . . . . 5 (𝑃 ∈ ℙ → 𝑃𝑃)
1514adantr 485 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → 𝑃𝑃)
16 breq1 5036 . . . 4 (𝑀 = 𝑃 → (𝑀𝑃𝑃𝑃))
1715, 16syl5ibrcom 250 . . 3 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 = 𝑃𝑀𝑃))
18 1dvds 15665 . . . . . 6 (𝑃 ∈ ℤ → 1 ∥ 𝑃)
1912, 18syl 17 . . . . 5 (𝑃 ∈ ℙ → 1 ∥ 𝑃)
2019adantr 485 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → 1 ∥ 𝑃)
21 breq1 5036 . . . 4 (𝑀 = 1 → (𝑀𝑃 ↔ 1 ∥ 𝑃))
2220, 21syl5ibrcom 250 . . 3 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 = 1 → 𝑀𝑃))
2317, 22jaod 857 . 2 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → ((𝑀 = 𝑃𝑀 = 1) → 𝑀𝑃))
2411, 23impbid 215 1 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀𝑃 ↔ (𝑀 = 𝑃𝑀 = 1)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400   ∨ wo 845   = wceq 1539   ∈ wcel 2112  ∀wral 3071   class class class wbr 5033  ‘cfv 6336  1c1 10569  ℕcn 11667  2c2 11722  ℤcz 12013  ℤ≥cuz 12275   ∥ cdvds 15648  ℙcprime 16060 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645  ax-pre-sup 10646 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-2o 8114  df-er 8300  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-sup 8932  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-div 11329  df-nn 11668  df-2 11730  df-3 11731  df-n0 11928  df-z 12014  df-uz 12276  df-rp 12424  df-seq 13412  df-exp 13473  df-cj 14499  df-re 14500  df-im 14501  df-sqrt 14635  df-abs 14636  df-dvds 15649  df-prm 16061 This theorem is referenced by:  prm2orodd  16080  pythagtriplem4  16204  odcau  18789  prmcyg  19075  prmgrpsimpgd  19297  2lgs  26083  rtprmirr  39837  goldbachthlem2  44424  fmtnofac1  44448  oddprmALTV  44565
 Copyright terms: Public domain W3C validator