Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvdsprime | Structured version Visualization version GIF version |
Description: If 𝑀 divides a prime, then 𝑀 is either the prime or one. (Contributed by Scott Fenton, 8-Apr-2014.) |
Ref | Expression |
---|---|
dvdsprime | ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 ↔ (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isprm2 16071 | . . 3 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑃 → (𝑚 = 1 ∨ 𝑚 = 𝑃)))) | |
2 | breq1 5036 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑚 ∥ 𝑃 ↔ 𝑀 ∥ 𝑃)) | |
3 | eqeq1 2763 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑚 = 1 ↔ 𝑀 = 1)) | |
4 | eqeq1 2763 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑚 = 𝑃 ↔ 𝑀 = 𝑃)) | |
5 | 3, 4 | orbi12d 917 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ((𝑚 = 1 ∨ 𝑚 = 𝑃) ↔ (𝑀 = 1 ∨ 𝑀 = 𝑃))) |
6 | orcom 868 | . . . . . . 7 ⊢ ((𝑀 = 1 ∨ 𝑀 = 𝑃) ↔ (𝑀 = 𝑃 ∨ 𝑀 = 1)) | |
7 | 5, 6 | bitrdi 290 | . . . . . 6 ⊢ (𝑚 = 𝑀 → ((𝑚 = 1 ∨ 𝑚 = 𝑃) ↔ (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
8 | 2, 7 | imbi12d 349 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝑚 ∥ 𝑃 → (𝑚 = 1 ∨ 𝑚 = 𝑃)) ↔ (𝑀 ∥ 𝑃 → (𝑀 = 𝑃 ∨ 𝑀 = 1)))) |
9 | 8 | rspccva 3541 | . . . 4 ⊢ ((∀𝑚 ∈ ℕ (𝑚 ∥ 𝑃 → (𝑚 = 1 ∨ 𝑚 = 𝑃)) ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 → (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
10 | 9 | adantll 714 | . . 3 ⊢ (((𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑃 → (𝑚 = 1 ∨ 𝑚 = 𝑃))) ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 → (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
11 | 1, 10 | sylanb 585 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 → (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
12 | prmz 16064 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
13 | iddvds 15664 | . . . . . 6 ⊢ (𝑃 ∈ ℤ → 𝑃 ∥ 𝑃) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∥ 𝑃) |
15 | 14 | adantr 485 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → 𝑃 ∥ 𝑃) |
16 | breq1 5036 | . . . 4 ⊢ (𝑀 = 𝑃 → (𝑀 ∥ 𝑃 ↔ 𝑃 ∥ 𝑃)) | |
17 | 15, 16 | syl5ibrcom 250 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 = 𝑃 → 𝑀 ∥ 𝑃)) |
18 | 1dvds 15665 | . . . . . 6 ⊢ (𝑃 ∈ ℤ → 1 ∥ 𝑃) | |
19 | 12, 18 | syl 17 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 1 ∥ 𝑃) |
20 | 19 | adantr 485 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → 1 ∥ 𝑃) |
21 | breq1 5036 | . . . 4 ⊢ (𝑀 = 1 → (𝑀 ∥ 𝑃 ↔ 1 ∥ 𝑃)) | |
22 | 20, 21 | syl5ibrcom 250 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 = 1 → 𝑀 ∥ 𝑃)) |
23 | 17, 22 | jaod 857 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → ((𝑀 = 𝑃 ∨ 𝑀 = 1) → 𝑀 ∥ 𝑃)) |
24 | 11, 23 | impbid 215 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 ↔ (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 ∨ wo 845 = wceq 1539 ∈ wcel 2112 ∀wral 3071 class class class wbr 5033 ‘cfv 6336 1c1 10569 ℕcn 11667 2c2 11722 ℤcz 12013 ℤ≥cuz 12275 ∥ cdvds 15648 ℙcprime 16060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 ax-pre-sup 10646 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-2o 8114 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-sup 8932 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-div 11329 df-nn 11668 df-2 11730 df-3 11731 df-n0 11928 df-z 12014 df-uz 12276 df-rp 12424 df-seq 13412 df-exp 13473 df-cj 14499 df-re 14500 df-im 14501 df-sqrt 14635 df-abs 14636 df-dvds 15649 df-prm 16061 |
This theorem is referenced by: prm2orodd 16080 pythagtriplem4 16204 odcau 18789 prmcyg 19075 prmgrpsimpgd 19297 2lgs 26083 rtprmirr 39837 goldbachthlem2 44424 fmtnofac1 44448 oddprmALTV 44565 |
Copyright terms: Public domain | W3C validator |