Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvds1 | Structured version Visualization version GIF version |
Description: The only nonnegative integer that divides 1 is 1. (Contributed by Mario Carneiro, 2-Jul-2015.) |
Ref | Expression |
---|---|
dvds1 | ⊢ (𝑀 ∈ ℕ0 → (𝑀 ∥ 1 ↔ 𝑀 = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 486 | . . . 4 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑀 ∥ 1) → 𝑀 ∈ ℕ0) | |
2 | 1nn0 11950 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
3 | 2 | a1i 11 | . . . 4 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑀 ∥ 1) → 1 ∈ ℕ0) |
4 | simpr 488 | . . . 4 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑀 ∥ 1) → 𝑀 ∥ 1) | |
5 | nn0z 12044 | . . . . . 6 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ) | |
6 | 1dvds 15672 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 1 ∥ 𝑀) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → 1 ∥ 𝑀) |
8 | 7 | adantr 484 | . . . 4 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑀 ∥ 1) → 1 ∥ 𝑀) |
9 | dvdseq 15715 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (𝑀 ∥ 1 ∧ 1 ∥ 𝑀)) → 𝑀 = 1) | |
10 | 1, 3, 4, 8, 9 | syl22anc 837 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑀 ∥ 1) → 𝑀 = 1) |
11 | 10 | ex 416 | . 2 ⊢ (𝑀 ∈ ℕ0 → (𝑀 ∥ 1 → 𝑀 = 1)) |
12 | id 22 | . . 3 ⊢ (𝑀 = 1 → 𝑀 = 1) | |
13 | 1z 12051 | . . . 4 ⊢ 1 ∈ ℤ | |
14 | iddvds 15671 | . . . 4 ⊢ (1 ∈ ℤ → 1 ∥ 1) | |
15 | 13, 14 | ax-mp 5 | . . 3 ⊢ 1 ∥ 1 |
16 | 12, 15 | eqbrtrdi 5071 | . 2 ⊢ (𝑀 = 1 → 𝑀 ∥ 1) |
17 | 11, 16 | impbid1 228 | 1 ⊢ (𝑀 ∈ ℕ0 → (𝑀 ∥ 1 ↔ 𝑀 = 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 class class class wbr 5032 1c1 10576 ℕ0cn0 11934 ℤcz 12020 ∥ cdvds 15655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-sup 8939 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-n0 11935 df-z 12021 df-uz 12283 df-rp 12431 df-seq 13419 df-exp 13480 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-dvds 15656 |
This theorem is referenced by: rpmulgcd2 16052 rpmul 16055 1nprm 16075 nprmdvds1 16102 expnprm 16293 ablfacrp 19256 chrnzr 20298 znunit 20331 znrrg 20333 lighneallem3 44492 |
Copyright terms: Public domain | W3C validator |