![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > diag2cl | Structured version Visualization version GIF version |
Description: The diagonal functor at a morphism is a natural transformation between constant functors. (Contributed by Mario Carneiro, 7-Jan-2017.) |
Ref | Expression |
---|---|
diag2.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
diag2.a | ⊢ 𝐴 = (Base‘𝐶) |
diag2.b | ⊢ 𝐵 = (Base‘𝐷) |
diag2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
diag2.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
diag2.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
diag2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
diag2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
diag2.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
diag2cl.h | ⊢ 𝑁 = (𝐷 Nat 𝐶) |
Ref | Expression |
---|---|
diag2cl | ⊢ (𝜑 → (𝐵 × {𝐹}) ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diag2.l | . . 3 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
2 | diag2.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
3 | diag2.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
4 | diag2.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
5 | diag2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
6 | diag2.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
7 | diag2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
8 | diag2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
9 | diag2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | diag2 18270 | . 2 ⊢ (𝜑 → ((𝑋(2nd ‘𝐿)𝑌)‘𝐹) = (𝐵 × {𝐹})) |
11 | eqid 2726 | . . . . 5 ⊢ (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶) | |
12 | diag2cl.h | . . . . 5 ⊢ 𝑁 = (𝐷 Nat 𝐶) | |
13 | 11, 12 | fuchom 17985 | . . . 4 ⊢ 𝑁 = (Hom ‘(𝐷 FuncCat 𝐶)) |
14 | relfunc 17881 | . . . . 5 ⊢ Rel (𝐶 Func (𝐷 FuncCat 𝐶)) | |
15 | 1, 5, 6, 11 | diagcl 18266 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶))) |
16 | 1st2ndbr 8056 | . . . . 5 ⊢ ((Rel (𝐶 Func (𝐷 FuncCat 𝐶)) ∧ 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶))) → (1st ‘𝐿)(𝐶 Func (𝐷 FuncCat 𝐶))(2nd ‘𝐿)) | |
17 | 14, 15, 16 | sylancr 585 | . . . 4 ⊢ (𝜑 → (1st ‘𝐿)(𝐶 Func (𝐷 FuncCat 𝐶))(2nd ‘𝐿)) |
18 | 2, 4, 13, 17, 7, 8 | funcf2 17887 | . . 3 ⊢ (𝜑 → (𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)⟶(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) |
19 | 18, 9 | ffvelcdmd 7099 | . 2 ⊢ (𝜑 → ((𝑋(2nd ‘𝐿)𝑌)‘𝐹) ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) |
20 | 10, 19 | eqeltrrd 2827 | 1 ⊢ (𝜑 → (𝐵 × {𝐹}) ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 {csn 4633 class class class wbr 5153 × cxp 5680 Rel wrel 5687 ‘cfv 6554 (class class class)co 7424 1st c1st 8001 2nd c2nd 8002 Basecbs 17213 Hom chom 17277 Catccat 17677 Func cfunc 17873 Nat cnat 17964 FuncCat cfuc 17965 Δfunccdiag 18237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-map 8857 df-ixp 8927 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-fz 13539 df-struct 17149 df-slot 17184 df-ndx 17196 df-base 17214 df-hom 17290 df-cco 17291 df-cat 17681 df-cid 17682 df-func 17877 df-nat 17966 df-fuc 17967 df-xpc 18196 df-1stf 18197 df-curf 18239 df-diag 18241 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |