| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > diag2cl | Structured version Visualization version GIF version | ||
| Description: The diagonal functor at a morphism is a natural transformation between constant functors. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| Ref | Expression |
|---|---|
| diag2.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
| diag2.a | ⊢ 𝐴 = (Base‘𝐶) |
| diag2.b | ⊢ 𝐵 = (Base‘𝐷) |
| diag2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| diag2.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| diag2.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| diag2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| diag2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
| diag2.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| diag2cl.h | ⊢ 𝑁 = (𝐷 Nat 𝐶) |
| Ref | Expression |
|---|---|
| diag2cl | ⊢ (𝜑 → (𝐵 × {𝐹}) ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag2.l | . . 3 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
| 2 | diag2.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
| 3 | diag2.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 4 | diag2.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 5 | diag2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 6 | diag2.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 7 | diag2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 8 | diag2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
| 9 | diag2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | diag2 18212 | . 2 ⊢ (𝜑 → ((𝑋(2nd ‘𝐿)𝑌)‘𝐹) = (𝐵 × {𝐹})) |
| 11 | eqid 2730 | . . . . 5 ⊢ (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶) | |
| 12 | diag2cl.h | . . . . 5 ⊢ 𝑁 = (𝐷 Nat 𝐶) | |
| 13 | 11, 12 | fuchom 17932 | . . . 4 ⊢ 𝑁 = (Hom ‘(𝐷 FuncCat 𝐶)) |
| 14 | relfunc 17830 | . . . . 5 ⊢ Rel (𝐶 Func (𝐷 FuncCat 𝐶)) | |
| 15 | 1, 5, 6, 11 | diagcl 18208 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶))) |
| 16 | 1st2ndbr 8023 | . . . . 5 ⊢ ((Rel (𝐶 Func (𝐷 FuncCat 𝐶)) ∧ 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶))) → (1st ‘𝐿)(𝐶 Func (𝐷 FuncCat 𝐶))(2nd ‘𝐿)) | |
| 17 | 14, 15, 16 | sylancr 587 | . . . 4 ⊢ (𝜑 → (1st ‘𝐿)(𝐶 Func (𝐷 FuncCat 𝐶))(2nd ‘𝐿)) |
| 18 | 2, 4, 13, 17, 7, 8 | funcf2 17836 | . . 3 ⊢ (𝜑 → (𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)⟶(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) |
| 19 | 18, 9 | ffvelcdmd 7059 | . 2 ⊢ (𝜑 → ((𝑋(2nd ‘𝐿)𝑌)‘𝐹) ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) |
| 20 | 10, 19 | eqeltrrd 2830 | 1 ⊢ (𝜑 → (𝐵 × {𝐹}) ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4591 class class class wbr 5109 × cxp 5638 Rel wrel 5645 ‘cfv 6513 (class class class)co 7389 1st c1st 7968 2nd c2nd 7969 Basecbs 17185 Hom chom 17237 Catccat 17631 Func cfunc 17822 Nat cnat 17912 FuncCat cfuc 17913 Δfunccdiag 18179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-cat 17635 df-cid 17636 df-func 17826 df-nat 17914 df-fuc 17915 df-xpc 18139 df-1stf 18140 df-curf 18181 df-diag 18183 |
| This theorem is referenced by: oppfdiag 49385 islmd 49633 iscmd 49634 |
| Copyright terms: Public domain | W3C validator |