MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  diag2cl Structured version   Visualization version   GIF version

Theorem diag2cl 18318
Description: The diagonal functor at a morphism is a natural transformation between constant functors. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
diag2.l 𝐿 = (𝐶Δfunc𝐷)
diag2.a 𝐴 = (Base‘𝐶)
diag2.b 𝐵 = (Base‘𝐷)
diag2.h 𝐻 = (Hom ‘𝐶)
diag2.c (𝜑𝐶 ∈ Cat)
diag2.d (𝜑𝐷 ∈ Cat)
diag2.x (𝜑𝑋𝐴)
diag2.y (𝜑𝑌𝐴)
diag2.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
diag2cl.h 𝑁 = (𝐷 Nat 𝐶)
Assertion
Ref Expression
diag2cl (𝜑 → (𝐵 × {𝐹}) ∈ (((1st𝐿)‘𝑋)𝑁((1st𝐿)‘𝑌)))

Proof of Theorem diag2cl
StepHypRef Expression
1 diag2.l . . 3 𝐿 = (𝐶Δfunc𝐷)
2 diag2.a . . 3 𝐴 = (Base‘𝐶)
3 diag2.b . . 3 𝐵 = (Base‘𝐷)
4 diag2.h . . 3 𝐻 = (Hom ‘𝐶)
5 diag2.c . . 3 (𝜑𝐶 ∈ Cat)
6 diag2.d . . 3 (𝜑𝐷 ∈ Cat)
7 diag2.x . . 3 (𝜑𝑋𝐴)
8 diag2.y . . 3 (𝜑𝑌𝐴)
9 diag2.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
101, 2, 3, 4, 5, 6, 7, 8, 9diag2 18317 . 2 (𝜑 → ((𝑋(2nd𝐿)𝑌)‘𝐹) = (𝐵 × {𝐹}))
11 eqid 2740 . . . . 5 (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶)
12 diag2cl.h . . . . 5 𝑁 = (𝐷 Nat 𝐶)
1311, 12fuchom 18032 . . . 4 𝑁 = (Hom ‘(𝐷 FuncCat 𝐶))
14 relfunc 17928 . . . . 5 Rel (𝐶 Func (𝐷 FuncCat 𝐶))
151, 5, 6, 11diagcl 18313 . . . . 5 (𝜑𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
16 1st2ndbr 8085 . . . . 5 ((Rel (𝐶 Func (𝐷 FuncCat 𝐶)) ∧ 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶))) → (1st𝐿)(𝐶 Func (𝐷 FuncCat 𝐶))(2nd𝐿))
1714, 15, 16sylancr 586 . . . 4 (𝜑 → (1st𝐿)(𝐶 Func (𝐷 FuncCat 𝐶))(2nd𝐿))
182, 4, 13, 17, 7, 8funcf2 17934 . . 3 (𝜑 → (𝑋(2nd𝐿)𝑌):(𝑋𝐻𝑌)⟶(((1st𝐿)‘𝑋)𝑁((1st𝐿)‘𝑌)))
1918, 9ffvelcdmd 7121 . 2 (𝜑 → ((𝑋(2nd𝐿)𝑌)‘𝐹) ∈ (((1st𝐿)‘𝑋)𝑁((1st𝐿)‘𝑌)))
2010, 19eqeltrrd 2845 1 (𝜑 → (𝐵 × {𝐹}) ∈ (((1st𝐿)‘𝑋)𝑁((1st𝐿)‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {csn 4648   class class class wbr 5166   × cxp 5698  Rel wrel 5705  cfv 6575  (class class class)co 7450  1st c1st 8030  2nd c2nd 8031  Basecbs 17260  Hom chom 17324  Catccat 17724   Func cfunc 17920   Nat cnat 18011   FuncCat cfuc 18012  Δfunccdiag 18284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-er 8765  df-map 8888  df-ixp 8958  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-nn 12296  df-2 12358  df-3 12359  df-4 12360  df-5 12361  df-6 12362  df-7 12363  df-8 12364  df-9 12365  df-n0 12556  df-z 12642  df-dec 12761  df-uz 12906  df-fz 13570  df-struct 17196  df-slot 17231  df-ndx 17243  df-base 17261  df-hom 17337  df-cco 17338  df-cat 17728  df-cid 17729  df-func 17924  df-nat 18013  df-fuc 18014  df-xpc 18243  df-1stf 18244  df-curf 18286  df-diag 18288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator