MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binomfallfac Structured version   Visualization version   GIF version

Theorem binomfallfac 15390
Description: A version of the binomial theorem using falling factorials instead of exponentials. (Contributed by Scott Fenton, 13-Mar-2018.)
Assertion
Ref Expression
binomfallfac ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁

Proof of Theorem binomfallfac
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7147 . . . . . 6 (𝑚 = 0 → ((𝐴 + 𝐵) FallFac 𝑚) = ((𝐴 + 𝐵) FallFac 0))
2 oveq2 7147 . . . . . . . 8 (𝑚 = 0 → (0...𝑚) = (0...0))
3 fz0sn 13006 . . . . . . . 8 (0...0) = {0}
42, 3eqtrdi 2852 . . . . . . 7 (𝑚 = 0 → (0...𝑚) = {0})
5 oveq1 7146 . . . . . . . . 9 (𝑚 = 0 → (𝑚C𝑘) = (0C𝑘))
6 oveq1 7146 . . . . . . . . . . 11 (𝑚 = 0 → (𝑚𝑘) = (0 − 𝑘))
76oveq2d 7155 . . . . . . . . . 10 (𝑚 = 0 → (𝐴 FallFac (𝑚𝑘)) = (𝐴 FallFac (0 − 𝑘)))
87oveq1d 7154 . . . . . . . . 9 (𝑚 = 0 → ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘)) = ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘)))
95, 8oveq12d 7157 . . . . . . . 8 (𝑚 = 0 → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))))
109adantr 484 . . . . . . 7 ((𝑚 = 0 ∧ 𝑘 ∈ (0...𝑚)) → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))))
114, 10sumeq12dv 15058 . . . . . 6 (𝑚 = 0 → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = Σ𝑘 ∈ {0} ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))))
121, 11eqeq12d 2817 . . . . 5 (𝑚 = 0 → (((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) ↔ ((𝐴 + 𝐵) FallFac 0) = Σ𝑘 ∈ {0} ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘)))))
1312imbi2d 344 . . . 4 (𝑚 = 0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 0) = Σ𝑘 ∈ {0} ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))))))
14 oveq2 7147 . . . . . 6 (𝑚 = 𝑛 → ((𝐴 + 𝐵) FallFac 𝑚) = ((𝐴 + 𝐵) FallFac 𝑛))
15 oveq2 7147 . . . . . . 7 (𝑚 = 𝑛 → (0...𝑚) = (0...𝑛))
16 oveq1 7146 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑚C𝑘) = (𝑛C𝑘))
17 oveq1 7146 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑚𝑘) = (𝑛𝑘))
1817oveq2d 7155 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝐴 FallFac (𝑚𝑘)) = (𝐴 FallFac (𝑛𝑘)))
1918oveq1d 7154 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘)) = ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘)))
2016, 19oveq12d 7157 . . . . . . . 8 (𝑚 = 𝑛 → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = ((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘))))
2120adantr 484 . . . . . . 7 ((𝑚 = 𝑛𝑘 ∈ (0...𝑚)) → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = ((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘))))
2215, 21sumeq12dv 15058 . . . . . 6 (𝑚 = 𝑛 → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘))))
2314, 22eqeq12d 2817 . . . . 5 (𝑚 = 𝑛 → (((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) ↔ ((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘)))))
2423imbi2d 344 . . . 4 (𝑚 = 𝑛 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘))))))
25 oveq2 7147 . . . . . 6 (𝑚 = (𝑛 + 1) → ((𝐴 + 𝐵) FallFac 𝑚) = ((𝐴 + 𝐵) FallFac (𝑛 + 1)))
26 oveq2 7147 . . . . . . 7 (𝑚 = (𝑛 + 1) → (0...𝑚) = (0...(𝑛 + 1)))
27 oveq1 7146 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → (𝑚C𝑘) = ((𝑛 + 1)C𝑘))
28 oveq1 7146 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (𝑚𝑘) = ((𝑛 + 1) − 𝑘))
2928oveq2d 7155 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (𝐴 FallFac (𝑚𝑘)) = (𝐴 FallFac ((𝑛 + 1) − 𝑘)))
3029oveq1d 7154 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘)) = ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))
3127, 30oveq12d 7157 . . . . . . . 8 (𝑚 = (𝑛 + 1) → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = (((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))
3231adantr 484 . . . . . . 7 ((𝑚 = (𝑛 + 1) ∧ 𝑘 ∈ (0...𝑚)) → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = (((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))
3326, 32sumeq12dv 15058 . . . . . 6 (𝑚 = (𝑛 + 1) → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))
3425, 33eqeq12d 2817 . . . . 5 (𝑚 = (𝑛 + 1) → (((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) ↔ ((𝐴 + 𝐵) FallFac (𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))))
3534imbi2d 344 . . . 4 (𝑚 = (𝑛 + 1) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac (𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))))
36 oveq2 7147 . . . . . 6 (𝑚 = 𝑁 → ((𝐴 + 𝐵) FallFac 𝑚) = ((𝐴 + 𝐵) FallFac 𝑁))
37 oveq2 7147 . . . . . . 7 (𝑚 = 𝑁 → (0...𝑚) = (0...𝑁))
38 oveq1 7146 . . . . . . . . 9 (𝑚 = 𝑁 → (𝑚C𝑘) = (𝑁C𝑘))
39 oveq1 7146 . . . . . . . . . . 11 (𝑚 = 𝑁 → (𝑚𝑘) = (𝑁𝑘))
4039oveq2d 7155 . . . . . . . . . 10 (𝑚 = 𝑁 → (𝐴 FallFac (𝑚𝑘)) = (𝐴 FallFac (𝑁𝑘)))
4140oveq1d 7154 . . . . . . . . 9 (𝑚 = 𝑁 → ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘)) = ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)))
4238, 41oveq12d 7157 . . . . . . . 8 (𝑚 = 𝑁 → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = ((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))))
4342adantr 484 . . . . . . 7 ((𝑚 = 𝑁𝑘 ∈ (0...𝑚)) → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = ((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))))
4437, 43sumeq12dv 15058 . . . . . 6 (𝑚 = 𝑁 → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))))
4536, 44eqeq12d 2817 . . . . 5 (𝑚 = 𝑁 → (((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) ↔ ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)))))
4645imbi2d 344 . . . 4 (𝑚 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))))))
47 fallfac0 15377 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴 FallFac 0) = 1)
48 fallfac0 15377 . . . . . . . . 9 (𝐵 ∈ ℂ → (𝐵 FallFac 0) = 1)
4947, 48oveqan12d 7158 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 FallFac 0) · (𝐵 FallFac 0)) = (1 · 1))
50 1t1e1 11791 . . . . . . . 8 (1 · 1) = 1
5149, 50eqtrdi 2852 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 FallFac 0) · (𝐵 FallFac 0)) = 1)
5251oveq2d 7155 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴 FallFac 0) · (𝐵 FallFac 0))) = (1 · 1))
5352, 50eqtrdi 2852 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴 FallFac 0) · (𝐵 FallFac 0))) = 1)
54 0cn 10626 . . . . . 6 0 ∈ ℂ
55 ax-1cn 10588 . . . . . . 7 1 ∈ ℂ
5653, 55eqeltrdi 2901 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴 FallFac 0) · (𝐵 FallFac 0))) ∈ ℂ)
57 oveq2 7147 . . . . . . . . 9 (𝑘 = 0 → (0C𝑘) = (0C0))
58 0nn0 11904 . . . . . . . . . 10 0 ∈ ℕ0
59 bcnn 13672 . . . . . . . . . 10 (0 ∈ ℕ0 → (0C0) = 1)
6058, 59ax-mp 5 . . . . . . . . 9 (0C0) = 1
6157, 60eqtrdi 2852 . . . . . . . 8 (𝑘 = 0 → (0C𝑘) = 1)
62 oveq2 7147 . . . . . . . . . . 11 (𝑘 = 0 → (0 − 𝑘) = (0 − 0))
63 0m0e0 11749 . . . . . . . . . . 11 (0 − 0) = 0
6462, 63eqtrdi 2852 . . . . . . . . . 10 (𝑘 = 0 → (0 − 𝑘) = 0)
6564oveq2d 7155 . . . . . . . . 9 (𝑘 = 0 → (𝐴 FallFac (0 − 𝑘)) = (𝐴 FallFac 0))
66 oveq2 7147 . . . . . . . . 9 (𝑘 = 0 → (𝐵 FallFac 𝑘) = (𝐵 FallFac 0))
6765, 66oveq12d 7157 . . . . . . . 8 (𝑘 = 0 → ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘)) = ((𝐴 FallFac 0) · (𝐵 FallFac 0)))
6861, 67oveq12d 7157 . . . . . . 7 (𝑘 = 0 → ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))) = (1 · ((𝐴 FallFac 0) · (𝐵 FallFac 0))))
6968sumsn 15096 . . . . . 6 ((0 ∈ ℂ ∧ (1 · ((𝐴 FallFac 0) · (𝐵 FallFac 0))) ∈ ℂ) → Σ𝑘 ∈ {0} ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))) = (1 · ((𝐴 FallFac 0) · (𝐵 FallFac 0))))
7054, 56, 69sylancr 590 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {0} ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))) = (1 · ((𝐴 FallFac 0) · (𝐵 FallFac 0))))
71 addcl 10612 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
72 fallfac0 15377 . . . . . 6 ((𝐴 + 𝐵) ∈ ℂ → ((𝐴 + 𝐵) FallFac 0) = 1)
7371, 72syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 0) = 1)
7453, 70, 733eqtr4rd 2847 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 0) = Σ𝑘 ∈ {0} ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))))
75 simprl 770 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐴 ∈ ℂ)
76 simprr 772 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐵 ∈ ℂ)
77 simpl 486 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → 𝑛 ∈ ℕ0)
78 id 22 . . . . . . 7 (((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘))) → ((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘))))
7975, 76, 77, 78binomfallfaclem2 15389 . . . . . 6 (((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘)))) → ((𝐴 + 𝐵) FallFac (𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))
8079exp31 423 . . . . 5 (𝑛 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘))) → ((𝐴 + 𝐵) FallFac (𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))))
8180a2d 29 . . . 4 (𝑛 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘)))) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac (𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))))
8213, 24, 35, 46, 74, 81nn0ind 12069 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)))))
8382com12 32 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑁 ∈ ℕ0 → ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)))))
84833impia 1114 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  {csn 4528  (class class class)co 7139  cc 10528  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535  cmin 10863  0cn0 11889  ...cfz 12889  Ccbc 13662  Σcsu 15037   FallFac cfallfac 15353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-fzo 13033  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-sum 15038  df-prod 15255  df-risefac 15355  df-fallfac 15356
This theorem is referenced by:  binomrisefac  15391
  Copyright terms: Public domain W3C validator