Step | Hyp | Ref
| Expression |
1 | | oveq2 7283 |
. . . . . 6
⊢ (𝑚 = 0 → ((𝐴 + 𝐵) FallFac 𝑚) = ((𝐴 + 𝐵) FallFac 0)) |
2 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑚 = 0 → (0...𝑚) = (0...0)) |
3 | | fz0sn 13356 |
. . . . . . . 8
⊢ (0...0) =
{0} |
4 | 2, 3 | eqtrdi 2794 |
. . . . . . 7
⊢ (𝑚 = 0 → (0...𝑚) = {0}) |
5 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑚 = 0 → (𝑚C𝑘) = (0C𝑘)) |
6 | | oveq1 7282 |
. . . . . . . . . . 11
⊢ (𝑚 = 0 → (𝑚 − 𝑘) = (0 − 𝑘)) |
7 | 6 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (𝑚 = 0 → (𝐴 FallFac (𝑚 − 𝑘)) = (𝐴 FallFac (0 − 𝑘))) |
8 | 7 | oveq1d 7290 |
. . . . . . . . 9
⊢ (𝑚 = 0 → ((𝐴 FallFac (𝑚 − 𝑘)) · (𝐵 FallFac 𝑘)) = ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))) |
9 | 5, 8 | oveq12d 7293 |
. . . . . . . 8
⊢ (𝑚 = 0 → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚 − 𝑘)) · (𝐵 FallFac 𝑘))) = ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘)))) |
10 | 9 | adantr 481 |
. . . . . . 7
⊢ ((𝑚 = 0 ∧ 𝑘 ∈ (0...𝑚)) → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚 − 𝑘)) · (𝐵 FallFac 𝑘))) = ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘)))) |
11 | 4, 10 | sumeq12dv 15418 |
. . . . . 6
⊢ (𝑚 = 0 → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚 − 𝑘)) · (𝐵 FallFac 𝑘))) = Σ𝑘 ∈ {0} ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘)))) |
12 | 1, 11 | eqeq12d 2754 |
. . . . 5
⊢ (𝑚 = 0 → (((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚 − 𝑘)) · (𝐵 FallFac 𝑘))) ↔ ((𝐴 + 𝐵) FallFac 0) = Σ𝑘 ∈ {0} ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))))) |
13 | 12 | imbi2d 341 |
. . . 4
⊢ (𝑚 = 0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚 − 𝑘)) · (𝐵 FallFac 𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 0) = Σ𝑘 ∈ {0} ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘)))))) |
14 | | oveq2 7283 |
. . . . . 6
⊢ (𝑚 = 𝑛 → ((𝐴 + 𝐵) FallFac 𝑚) = ((𝐴 + 𝐵) FallFac 𝑛)) |
15 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → (0...𝑚) = (0...𝑛)) |
16 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (𝑚C𝑘) = (𝑛C𝑘)) |
17 | | oveq1 7282 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (𝑚 − 𝑘) = (𝑛 − 𝑘)) |
18 | 17 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → (𝐴 FallFac (𝑚 − 𝑘)) = (𝐴 FallFac (𝑛 − 𝑘))) |
19 | 18 | oveq1d 7290 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → ((𝐴 FallFac (𝑚 − 𝑘)) · (𝐵 FallFac 𝑘)) = ((𝐴 FallFac (𝑛 − 𝑘)) · (𝐵 FallFac 𝑘))) |
20 | 16, 19 | oveq12d 7293 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚 − 𝑘)) · (𝐵 FallFac 𝑘))) = ((𝑛C𝑘) · ((𝐴 FallFac (𝑛 − 𝑘)) · (𝐵 FallFac 𝑘)))) |
21 | 20 | adantr 481 |
. . . . . . 7
⊢ ((𝑚 = 𝑛 ∧ 𝑘 ∈ (0...𝑚)) → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚 − 𝑘)) · (𝐵 FallFac 𝑘))) = ((𝑛C𝑘) · ((𝐴 FallFac (𝑛 − 𝑘)) · (𝐵 FallFac 𝑘)))) |
22 | 15, 21 | sumeq12dv 15418 |
. . . . . 6
⊢ (𝑚 = 𝑛 → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚 − 𝑘)) · (𝐵 FallFac 𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛 − 𝑘)) · (𝐵 FallFac 𝑘)))) |
23 | 14, 22 | eqeq12d 2754 |
. . . . 5
⊢ (𝑚 = 𝑛 → (((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚 − 𝑘)) · (𝐵 FallFac 𝑘))) ↔ ((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛 − 𝑘)) · (𝐵 FallFac 𝑘))))) |
24 | 23 | imbi2d 341 |
. . . 4
⊢ (𝑚 = 𝑛 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚 − 𝑘)) · (𝐵 FallFac 𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛 − 𝑘)) · (𝐵 FallFac 𝑘)))))) |
25 | | oveq2 7283 |
. . . . . 6
⊢ (𝑚 = (𝑛 + 1) → ((𝐴 + 𝐵) FallFac 𝑚) = ((𝐴 + 𝐵) FallFac (𝑛 + 1))) |
26 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑚 = (𝑛 + 1) → (0...𝑚) = (0...(𝑛 + 1))) |
27 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑚 = (𝑛 + 1) → (𝑚C𝑘) = ((𝑛 + 1)C𝑘)) |
28 | | oveq1 7282 |
. . . . . . . . . . 11
⊢ (𝑚 = (𝑛 + 1) → (𝑚 − 𝑘) = ((𝑛 + 1) − 𝑘)) |
29 | 28 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (𝑚 = (𝑛 + 1) → (𝐴 FallFac (𝑚 − 𝑘)) = (𝐴 FallFac ((𝑛 + 1) − 𝑘))) |
30 | 29 | oveq1d 7290 |
. . . . . . . . 9
⊢ (𝑚 = (𝑛 + 1) → ((𝐴 FallFac (𝑚 − 𝑘)) · (𝐵 FallFac 𝑘)) = ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) |
31 | 27, 30 | oveq12d 7293 |
. . . . . . . 8
⊢ (𝑚 = (𝑛 + 1) → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚 − 𝑘)) · (𝐵 FallFac 𝑘))) = (((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))) |
32 | 31 | adantr 481 |
. . . . . . 7
⊢ ((𝑚 = (𝑛 + 1) ∧ 𝑘 ∈ (0...𝑚)) → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚 − 𝑘)) · (𝐵 FallFac 𝑘))) = (((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))) |
33 | 26, 32 | sumeq12dv 15418 |
. . . . . 6
⊢ (𝑚 = (𝑛 + 1) → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚 − 𝑘)) · (𝐵 FallFac 𝑘))) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))) |
34 | 25, 33 | eqeq12d 2754 |
. . . . 5
⊢ (𝑚 = (𝑛 + 1) → (((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚 − 𝑘)) · (𝐵 FallFac 𝑘))) ↔ ((𝐴 + 𝐵) FallFac (𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))) |
35 | 34 | imbi2d 341 |
. . . 4
⊢ (𝑚 = (𝑛 + 1) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚 − 𝑘)) · (𝐵 FallFac 𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac (𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))))) |
36 | | oveq2 7283 |
. . . . . 6
⊢ (𝑚 = 𝑁 → ((𝐴 + 𝐵) FallFac 𝑚) = ((𝐴 + 𝐵) FallFac 𝑁)) |
37 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑚 = 𝑁 → (0...𝑚) = (0...𝑁)) |
38 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑚 = 𝑁 → (𝑚C𝑘) = (𝑁C𝑘)) |
39 | | oveq1 7282 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑁 → (𝑚 − 𝑘) = (𝑁 − 𝑘)) |
40 | 39 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑁 → (𝐴 FallFac (𝑚 − 𝑘)) = (𝐴 FallFac (𝑁 − 𝑘))) |
41 | 40 | oveq1d 7290 |
. . . . . . . . 9
⊢ (𝑚 = 𝑁 → ((𝐴 FallFac (𝑚 − 𝑘)) · (𝐵 FallFac 𝑘)) = ((𝐴 FallFac (𝑁 − 𝑘)) · (𝐵 FallFac 𝑘))) |
42 | 38, 41 | oveq12d 7293 |
. . . . . . . 8
⊢ (𝑚 = 𝑁 → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚 − 𝑘)) · (𝐵 FallFac 𝑘))) = ((𝑁C𝑘) · ((𝐴 FallFac (𝑁 − 𝑘)) · (𝐵 FallFac 𝑘)))) |
43 | 42 | adantr 481 |
. . . . . . 7
⊢ ((𝑚 = 𝑁 ∧ 𝑘 ∈ (0...𝑚)) → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚 − 𝑘)) · (𝐵 FallFac 𝑘))) = ((𝑁C𝑘) · ((𝐴 FallFac (𝑁 − 𝑘)) · (𝐵 FallFac 𝑘)))) |
44 | 37, 43 | sumeq12dv 15418 |
. . . . . 6
⊢ (𝑚 = 𝑁 → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚 − 𝑘)) · (𝐵 FallFac 𝑘))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁 − 𝑘)) · (𝐵 FallFac 𝑘)))) |
45 | 36, 44 | eqeq12d 2754 |
. . . . 5
⊢ (𝑚 = 𝑁 → (((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚 − 𝑘)) · (𝐵 FallFac 𝑘))) ↔ ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁 − 𝑘)) · (𝐵 FallFac 𝑘))))) |
46 | 45 | imbi2d 341 |
. . . 4
⊢ (𝑚 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚 − 𝑘)) · (𝐵 FallFac 𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁 − 𝑘)) · (𝐵 FallFac 𝑘)))))) |
47 | | fallfac0 15738 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → (𝐴 FallFac 0) =
1) |
48 | | fallfac0 15738 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℂ → (𝐵 FallFac 0) =
1) |
49 | 47, 48 | oveqan12d 7294 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 FallFac 0) · (𝐵 FallFac 0)) = (1 ·
1)) |
50 | | 1t1e1 12135 |
. . . . . . . 8
⊢ (1
· 1) = 1 |
51 | 49, 50 | eqtrdi 2794 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 FallFac 0) · (𝐵 FallFac 0)) =
1) |
52 | 51 | oveq2d 7291 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1
· ((𝐴 FallFac 0)
· (𝐵 FallFac 0))) =
(1 · 1)) |
53 | 52, 50 | eqtrdi 2794 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1
· ((𝐴 FallFac 0)
· (𝐵 FallFac 0))) =
1) |
54 | | 0cn 10967 |
. . . . . 6
⊢ 0 ∈
ℂ |
55 | | ax-1cn 10929 |
. . . . . . 7
⊢ 1 ∈
ℂ |
56 | 53, 55 | eqeltrdi 2847 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1
· ((𝐴 FallFac 0)
· (𝐵 FallFac 0)))
∈ ℂ) |
57 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑘 = 0 → (0C𝑘) = (0C0)) |
58 | | 0nn0 12248 |
. . . . . . . . . 10
⊢ 0 ∈
ℕ0 |
59 | | bcnn 14026 |
. . . . . . . . . 10
⊢ (0 ∈
ℕ0 → (0C0) = 1) |
60 | 58, 59 | ax-mp 5 |
. . . . . . . . 9
⊢ (0C0) =
1 |
61 | 57, 60 | eqtrdi 2794 |
. . . . . . . 8
⊢ (𝑘 = 0 → (0C𝑘) = 1) |
62 | | oveq2 7283 |
. . . . . . . . . . 11
⊢ (𝑘 = 0 → (0 − 𝑘) = (0 −
0)) |
63 | | 0m0e0 12093 |
. . . . . . . . . . 11
⊢ (0
− 0) = 0 |
64 | 62, 63 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ (𝑘 = 0 → (0 − 𝑘) = 0) |
65 | 64 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑘 = 0 → (𝐴 FallFac (0 − 𝑘)) = (𝐴 FallFac 0)) |
66 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑘 = 0 → (𝐵 FallFac 𝑘) = (𝐵 FallFac 0)) |
67 | 65, 66 | oveq12d 7293 |
. . . . . . . 8
⊢ (𝑘 = 0 → ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘)) = ((𝐴 FallFac 0) · (𝐵 FallFac 0))) |
68 | 61, 67 | oveq12d 7293 |
. . . . . . 7
⊢ (𝑘 = 0 → ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))) = (1 · ((𝐴 FallFac 0) · (𝐵 FallFac 0)))) |
69 | 68 | sumsn 15458 |
. . . . . 6
⊢ ((0
∈ ℂ ∧ (1 · ((𝐴 FallFac 0) · (𝐵 FallFac 0))) ∈ ℂ) →
Σ𝑘 ∈ {0}
((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))) = (1 · ((𝐴 FallFac 0) · (𝐵 FallFac 0)))) |
70 | 54, 56, 69 | sylancr 587 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
Σ𝑘 ∈ {0}
((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))) = (1 · ((𝐴 FallFac 0) · (𝐵 FallFac 0)))) |
71 | | addcl 10953 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
72 | | fallfac0 15738 |
. . . . . 6
⊢ ((𝐴 + 𝐵) ∈ ℂ → ((𝐴 + 𝐵) FallFac 0) = 1) |
73 | 71, 72 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 0) = 1) |
74 | 53, 70, 73 | 3eqtr4rd 2789 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 0) = Σ𝑘 ∈ {0} ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘)))) |
75 | | simprl 768 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ (𝐴 ∈ ℂ
∧ 𝐵 ∈ ℂ))
→ 𝐴 ∈
ℂ) |
76 | | simprr 770 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ (𝐴 ∈ ℂ
∧ 𝐵 ∈ ℂ))
→ 𝐵 ∈
ℂ) |
77 | | simpl 483 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ (𝐴 ∈ ℂ
∧ 𝐵 ∈ ℂ))
→ 𝑛 ∈
ℕ0) |
78 | | id 22 |
. . . . . . 7
⊢ (((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛 − 𝑘)) · (𝐵 FallFac 𝑘))) → ((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛 − 𝑘)) · (𝐵 FallFac 𝑘)))) |
79 | 75, 76, 77, 78 | binomfallfaclem2 15750 |
. . . . . 6
⊢ (((𝑛 ∈ ℕ0
∧ (𝐴 ∈ ℂ
∧ 𝐵 ∈ ℂ))
∧ ((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛 − 𝑘)) · (𝐵 FallFac 𝑘)))) → ((𝐴 + 𝐵) FallFac (𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))) |
80 | 79 | exp31 420 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
→ ((𝐴 ∈ ℂ
∧ 𝐵 ∈ ℂ)
→ (((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛 − 𝑘)) · (𝐵 FallFac 𝑘))) → ((𝐴 + 𝐵) FallFac (𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))))) |
81 | 80 | a2d 29 |
. . . 4
⊢ (𝑛 ∈ ℕ0
→ (((𝐴 ∈ ℂ
∧ 𝐵 ∈ ℂ)
→ ((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛 − 𝑘)) · (𝐵 FallFac 𝑘)))) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac (𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))))) |
82 | 13, 24, 35, 46, 74, 81 | nn0ind 12415 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ ((𝐴 ∈ ℂ
∧ 𝐵 ∈ ℂ)
→ ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁 − 𝑘)) · (𝐵 FallFac 𝑘))))) |
83 | 82 | com12 32 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑁 ∈ ℕ0
→ ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁 − 𝑘)) · (𝐵 FallFac 𝑘))))) |
84 | 83 | 3impia 1116 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁 − 𝑘)) · (𝐵 FallFac 𝑘)))) |