MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binomfallfac Structured version   Visualization version   GIF version

Theorem binomfallfac 16074
Description: A version of the binomial theorem using falling factorials instead of exponentials. (Contributed by Scott Fenton, 13-Mar-2018.)
Assertion
Ref Expression
binomfallfac ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁

Proof of Theorem binomfallfac
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . . . 6 (𝑚 = 0 → ((𝐴 + 𝐵) FallFac 𝑚) = ((𝐴 + 𝐵) FallFac 0))
2 oveq2 7439 . . . . . . . 8 (𝑚 = 0 → (0...𝑚) = (0...0))
3 fz0sn 13664 . . . . . . . 8 (0...0) = {0}
42, 3eqtrdi 2791 . . . . . . 7 (𝑚 = 0 → (0...𝑚) = {0})
5 oveq1 7438 . . . . . . . . 9 (𝑚 = 0 → (𝑚C𝑘) = (0C𝑘))
6 oveq1 7438 . . . . . . . . . . 11 (𝑚 = 0 → (𝑚𝑘) = (0 − 𝑘))
76oveq2d 7447 . . . . . . . . . 10 (𝑚 = 0 → (𝐴 FallFac (𝑚𝑘)) = (𝐴 FallFac (0 − 𝑘)))
87oveq1d 7446 . . . . . . . . 9 (𝑚 = 0 → ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘)) = ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘)))
95, 8oveq12d 7449 . . . . . . . 8 (𝑚 = 0 → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))))
109adantr 480 . . . . . . 7 ((𝑚 = 0 ∧ 𝑘 ∈ (0...𝑚)) → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))))
114, 10sumeq12dv 15739 . . . . . 6 (𝑚 = 0 → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = Σ𝑘 ∈ {0} ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))))
121, 11eqeq12d 2751 . . . . 5 (𝑚 = 0 → (((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) ↔ ((𝐴 + 𝐵) FallFac 0) = Σ𝑘 ∈ {0} ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘)))))
1312imbi2d 340 . . . 4 (𝑚 = 0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 0) = Σ𝑘 ∈ {0} ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))))))
14 oveq2 7439 . . . . . 6 (𝑚 = 𝑛 → ((𝐴 + 𝐵) FallFac 𝑚) = ((𝐴 + 𝐵) FallFac 𝑛))
15 oveq2 7439 . . . . . . 7 (𝑚 = 𝑛 → (0...𝑚) = (0...𝑛))
16 oveq1 7438 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑚C𝑘) = (𝑛C𝑘))
17 oveq1 7438 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑚𝑘) = (𝑛𝑘))
1817oveq2d 7447 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝐴 FallFac (𝑚𝑘)) = (𝐴 FallFac (𝑛𝑘)))
1918oveq1d 7446 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘)) = ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘)))
2016, 19oveq12d 7449 . . . . . . . 8 (𝑚 = 𝑛 → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = ((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘))))
2120adantr 480 . . . . . . 7 ((𝑚 = 𝑛𝑘 ∈ (0...𝑚)) → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = ((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘))))
2215, 21sumeq12dv 15739 . . . . . 6 (𝑚 = 𝑛 → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘))))
2314, 22eqeq12d 2751 . . . . 5 (𝑚 = 𝑛 → (((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) ↔ ((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘)))))
2423imbi2d 340 . . . 4 (𝑚 = 𝑛 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘))))))
25 oveq2 7439 . . . . . 6 (𝑚 = (𝑛 + 1) → ((𝐴 + 𝐵) FallFac 𝑚) = ((𝐴 + 𝐵) FallFac (𝑛 + 1)))
26 oveq2 7439 . . . . . . 7 (𝑚 = (𝑛 + 1) → (0...𝑚) = (0...(𝑛 + 1)))
27 oveq1 7438 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → (𝑚C𝑘) = ((𝑛 + 1)C𝑘))
28 oveq1 7438 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (𝑚𝑘) = ((𝑛 + 1) − 𝑘))
2928oveq2d 7447 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (𝐴 FallFac (𝑚𝑘)) = (𝐴 FallFac ((𝑛 + 1) − 𝑘)))
3029oveq1d 7446 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘)) = ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))
3127, 30oveq12d 7449 . . . . . . . 8 (𝑚 = (𝑛 + 1) → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = (((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))
3231adantr 480 . . . . . . 7 ((𝑚 = (𝑛 + 1) ∧ 𝑘 ∈ (0...𝑚)) → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = (((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))
3326, 32sumeq12dv 15739 . . . . . 6 (𝑚 = (𝑛 + 1) → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))
3425, 33eqeq12d 2751 . . . . 5 (𝑚 = (𝑛 + 1) → (((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) ↔ ((𝐴 + 𝐵) FallFac (𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))))
3534imbi2d 340 . . . 4 (𝑚 = (𝑛 + 1) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac (𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))))
36 oveq2 7439 . . . . . 6 (𝑚 = 𝑁 → ((𝐴 + 𝐵) FallFac 𝑚) = ((𝐴 + 𝐵) FallFac 𝑁))
37 oveq2 7439 . . . . . . 7 (𝑚 = 𝑁 → (0...𝑚) = (0...𝑁))
38 oveq1 7438 . . . . . . . . 9 (𝑚 = 𝑁 → (𝑚C𝑘) = (𝑁C𝑘))
39 oveq1 7438 . . . . . . . . . . 11 (𝑚 = 𝑁 → (𝑚𝑘) = (𝑁𝑘))
4039oveq2d 7447 . . . . . . . . . 10 (𝑚 = 𝑁 → (𝐴 FallFac (𝑚𝑘)) = (𝐴 FallFac (𝑁𝑘)))
4140oveq1d 7446 . . . . . . . . 9 (𝑚 = 𝑁 → ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘)) = ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)))
4238, 41oveq12d 7449 . . . . . . . 8 (𝑚 = 𝑁 → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = ((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))))
4342adantr 480 . . . . . . 7 ((𝑚 = 𝑁𝑘 ∈ (0...𝑚)) → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = ((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))))
4437, 43sumeq12dv 15739 . . . . . 6 (𝑚 = 𝑁 → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))))
4536, 44eqeq12d 2751 . . . . 5 (𝑚 = 𝑁 → (((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) ↔ ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)))))
4645imbi2d 340 . . . 4 (𝑚 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))))))
47 fallfac0 16061 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴 FallFac 0) = 1)
48 fallfac0 16061 . . . . . . . . 9 (𝐵 ∈ ℂ → (𝐵 FallFac 0) = 1)
4947, 48oveqan12d 7450 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 FallFac 0) · (𝐵 FallFac 0)) = (1 · 1))
50 1t1e1 12426 . . . . . . . 8 (1 · 1) = 1
5149, 50eqtrdi 2791 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 FallFac 0) · (𝐵 FallFac 0)) = 1)
5251oveq2d 7447 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴 FallFac 0) · (𝐵 FallFac 0))) = (1 · 1))
5352, 50eqtrdi 2791 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴 FallFac 0) · (𝐵 FallFac 0))) = 1)
54 0cn 11251 . . . . . 6 0 ∈ ℂ
55 ax-1cn 11211 . . . . . . 7 1 ∈ ℂ
5653, 55eqeltrdi 2847 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴 FallFac 0) · (𝐵 FallFac 0))) ∈ ℂ)
57 oveq2 7439 . . . . . . . . 9 (𝑘 = 0 → (0C𝑘) = (0C0))
58 0nn0 12539 . . . . . . . . . 10 0 ∈ ℕ0
59 bcnn 14348 . . . . . . . . . 10 (0 ∈ ℕ0 → (0C0) = 1)
6058, 59ax-mp 5 . . . . . . . . 9 (0C0) = 1
6157, 60eqtrdi 2791 . . . . . . . 8 (𝑘 = 0 → (0C𝑘) = 1)
62 oveq2 7439 . . . . . . . . . . 11 (𝑘 = 0 → (0 − 𝑘) = (0 − 0))
63 0m0e0 12384 . . . . . . . . . . 11 (0 − 0) = 0
6462, 63eqtrdi 2791 . . . . . . . . . 10 (𝑘 = 0 → (0 − 𝑘) = 0)
6564oveq2d 7447 . . . . . . . . 9 (𝑘 = 0 → (𝐴 FallFac (0 − 𝑘)) = (𝐴 FallFac 0))
66 oveq2 7439 . . . . . . . . 9 (𝑘 = 0 → (𝐵 FallFac 𝑘) = (𝐵 FallFac 0))
6765, 66oveq12d 7449 . . . . . . . 8 (𝑘 = 0 → ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘)) = ((𝐴 FallFac 0) · (𝐵 FallFac 0)))
6861, 67oveq12d 7449 . . . . . . 7 (𝑘 = 0 → ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))) = (1 · ((𝐴 FallFac 0) · (𝐵 FallFac 0))))
6968sumsn 15779 . . . . . 6 ((0 ∈ ℂ ∧ (1 · ((𝐴 FallFac 0) · (𝐵 FallFac 0))) ∈ ℂ) → Σ𝑘 ∈ {0} ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))) = (1 · ((𝐴 FallFac 0) · (𝐵 FallFac 0))))
7054, 56, 69sylancr 587 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {0} ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))) = (1 · ((𝐴 FallFac 0) · (𝐵 FallFac 0))))
71 addcl 11235 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
72 fallfac0 16061 . . . . . 6 ((𝐴 + 𝐵) ∈ ℂ → ((𝐴 + 𝐵) FallFac 0) = 1)
7371, 72syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 0) = 1)
7453, 70, 733eqtr4rd 2786 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 0) = Σ𝑘 ∈ {0} ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))))
75 simprl 771 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐴 ∈ ℂ)
76 simprr 773 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐵 ∈ ℂ)
77 simpl 482 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → 𝑛 ∈ ℕ0)
78 id 22 . . . . . . 7 (((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘))) → ((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘))))
7975, 76, 77, 78binomfallfaclem2 16073 . . . . . 6 (((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘)))) → ((𝐴 + 𝐵) FallFac (𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))
8079exp31 419 . . . . 5 (𝑛 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘))) → ((𝐴 + 𝐵) FallFac (𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))))
8180a2d 29 . . . 4 (𝑛 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘)))) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac (𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))))
8213, 24, 35, 46, 74, 81nn0ind 12711 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)))))
8382com12 32 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑁 ∈ ℕ0 → ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)))))
84833impia 1116 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  {csn 4631  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  0cn0 12524  ...cfz 13544  Ccbc 14338  Σcsu 15719   FallFac cfallfac 16037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-prod 15937  df-risefac 16039  df-fallfac 16040
This theorem is referenced by:  binomrisefac  16075
  Copyright terms: Public domain W3C validator