MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binomfallfac Structured version   Visualization version   GIF version

Theorem binomfallfac 15950
Description: A version of the binomial theorem using falling factorials instead of exponentials. (Contributed by Scott Fenton, 13-Mar-2018.)
Assertion
Ref Expression
binomfallfac ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁

Proof of Theorem binomfallfac
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7360 . . . . . 6 (𝑚 = 0 → ((𝐴 + 𝐵) FallFac 𝑚) = ((𝐴 + 𝐵) FallFac 0))
2 oveq2 7360 . . . . . . . 8 (𝑚 = 0 → (0...𝑚) = (0...0))
3 fz0sn 13529 . . . . . . . 8 (0...0) = {0}
42, 3eqtrdi 2784 . . . . . . 7 (𝑚 = 0 → (0...𝑚) = {0})
5 oveq1 7359 . . . . . . . . 9 (𝑚 = 0 → (𝑚C𝑘) = (0C𝑘))
6 oveq1 7359 . . . . . . . . . . 11 (𝑚 = 0 → (𝑚𝑘) = (0 − 𝑘))
76oveq2d 7368 . . . . . . . . . 10 (𝑚 = 0 → (𝐴 FallFac (𝑚𝑘)) = (𝐴 FallFac (0 − 𝑘)))
87oveq1d 7367 . . . . . . . . 9 (𝑚 = 0 → ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘)) = ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘)))
95, 8oveq12d 7370 . . . . . . . 8 (𝑚 = 0 → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))))
109adantr 480 . . . . . . 7 ((𝑚 = 0 ∧ 𝑘 ∈ (0...𝑚)) → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))))
114, 10sumeq12dv 15615 . . . . . 6 (𝑚 = 0 → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = Σ𝑘 ∈ {0} ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))))
121, 11eqeq12d 2749 . . . . 5 (𝑚 = 0 → (((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) ↔ ((𝐴 + 𝐵) FallFac 0) = Σ𝑘 ∈ {0} ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘)))))
1312imbi2d 340 . . . 4 (𝑚 = 0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 0) = Σ𝑘 ∈ {0} ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))))))
14 oveq2 7360 . . . . . 6 (𝑚 = 𝑛 → ((𝐴 + 𝐵) FallFac 𝑚) = ((𝐴 + 𝐵) FallFac 𝑛))
15 oveq2 7360 . . . . . . 7 (𝑚 = 𝑛 → (0...𝑚) = (0...𝑛))
16 oveq1 7359 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑚C𝑘) = (𝑛C𝑘))
17 oveq1 7359 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑚𝑘) = (𝑛𝑘))
1817oveq2d 7368 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝐴 FallFac (𝑚𝑘)) = (𝐴 FallFac (𝑛𝑘)))
1918oveq1d 7367 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘)) = ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘)))
2016, 19oveq12d 7370 . . . . . . . 8 (𝑚 = 𝑛 → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = ((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘))))
2120adantr 480 . . . . . . 7 ((𝑚 = 𝑛𝑘 ∈ (0...𝑚)) → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = ((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘))))
2215, 21sumeq12dv 15615 . . . . . 6 (𝑚 = 𝑛 → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘))))
2314, 22eqeq12d 2749 . . . . 5 (𝑚 = 𝑛 → (((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) ↔ ((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘)))))
2423imbi2d 340 . . . 4 (𝑚 = 𝑛 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘))))))
25 oveq2 7360 . . . . . 6 (𝑚 = (𝑛 + 1) → ((𝐴 + 𝐵) FallFac 𝑚) = ((𝐴 + 𝐵) FallFac (𝑛 + 1)))
26 oveq2 7360 . . . . . . 7 (𝑚 = (𝑛 + 1) → (0...𝑚) = (0...(𝑛 + 1)))
27 oveq1 7359 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → (𝑚C𝑘) = ((𝑛 + 1)C𝑘))
28 oveq1 7359 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (𝑚𝑘) = ((𝑛 + 1) − 𝑘))
2928oveq2d 7368 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (𝐴 FallFac (𝑚𝑘)) = (𝐴 FallFac ((𝑛 + 1) − 𝑘)))
3029oveq1d 7367 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘)) = ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))
3127, 30oveq12d 7370 . . . . . . . 8 (𝑚 = (𝑛 + 1) → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = (((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))
3231adantr 480 . . . . . . 7 ((𝑚 = (𝑛 + 1) ∧ 𝑘 ∈ (0...𝑚)) → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = (((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))
3326, 32sumeq12dv 15615 . . . . . 6 (𝑚 = (𝑛 + 1) → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))
3425, 33eqeq12d 2749 . . . . 5 (𝑚 = (𝑛 + 1) → (((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) ↔ ((𝐴 + 𝐵) FallFac (𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))))
3534imbi2d 340 . . . 4 (𝑚 = (𝑛 + 1) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac (𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))))
36 oveq2 7360 . . . . . 6 (𝑚 = 𝑁 → ((𝐴 + 𝐵) FallFac 𝑚) = ((𝐴 + 𝐵) FallFac 𝑁))
37 oveq2 7360 . . . . . . 7 (𝑚 = 𝑁 → (0...𝑚) = (0...𝑁))
38 oveq1 7359 . . . . . . . . 9 (𝑚 = 𝑁 → (𝑚C𝑘) = (𝑁C𝑘))
39 oveq1 7359 . . . . . . . . . . 11 (𝑚 = 𝑁 → (𝑚𝑘) = (𝑁𝑘))
4039oveq2d 7368 . . . . . . . . . 10 (𝑚 = 𝑁 → (𝐴 FallFac (𝑚𝑘)) = (𝐴 FallFac (𝑁𝑘)))
4140oveq1d 7367 . . . . . . . . 9 (𝑚 = 𝑁 → ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘)) = ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)))
4238, 41oveq12d 7370 . . . . . . . 8 (𝑚 = 𝑁 → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = ((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))))
4342adantr 480 . . . . . . 7 ((𝑚 = 𝑁𝑘 ∈ (0...𝑚)) → ((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = ((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))))
4437, 43sumeq12dv 15615 . . . . . 6 (𝑚 = 𝑁 → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))))
4536, 44eqeq12d 2749 . . . . 5 (𝑚 = 𝑁 → (((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘))) ↔ ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)))))
4645imbi2d 340 . . . 4 (𝑚 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑚) = Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · ((𝐴 FallFac (𝑚𝑘)) · (𝐵 FallFac 𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))))))
47 fallfac0 15937 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴 FallFac 0) = 1)
48 fallfac0 15937 . . . . . . . . 9 (𝐵 ∈ ℂ → (𝐵 FallFac 0) = 1)
4947, 48oveqan12d 7371 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 FallFac 0) · (𝐵 FallFac 0)) = (1 · 1))
50 1t1e1 12289 . . . . . . . 8 (1 · 1) = 1
5149, 50eqtrdi 2784 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 FallFac 0) · (𝐵 FallFac 0)) = 1)
5251oveq2d 7368 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴 FallFac 0) · (𝐵 FallFac 0))) = (1 · 1))
5352, 50eqtrdi 2784 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴 FallFac 0) · (𝐵 FallFac 0))) = 1)
54 0cn 11111 . . . . . 6 0 ∈ ℂ
55 ax-1cn 11071 . . . . . . 7 1 ∈ ℂ
5653, 55eqeltrdi 2841 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴 FallFac 0) · (𝐵 FallFac 0))) ∈ ℂ)
57 oveq2 7360 . . . . . . . . 9 (𝑘 = 0 → (0C𝑘) = (0C0))
58 0nn0 12403 . . . . . . . . . 10 0 ∈ ℕ0
59 bcnn 14221 . . . . . . . . . 10 (0 ∈ ℕ0 → (0C0) = 1)
6058, 59ax-mp 5 . . . . . . . . 9 (0C0) = 1
6157, 60eqtrdi 2784 . . . . . . . 8 (𝑘 = 0 → (0C𝑘) = 1)
62 oveq2 7360 . . . . . . . . . . 11 (𝑘 = 0 → (0 − 𝑘) = (0 − 0))
63 0m0e0 12247 . . . . . . . . . . 11 (0 − 0) = 0
6462, 63eqtrdi 2784 . . . . . . . . . 10 (𝑘 = 0 → (0 − 𝑘) = 0)
6564oveq2d 7368 . . . . . . . . 9 (𝑘 = 0 → (𝐴 FallFac (0 − 𝑘)) = (𝐴 FallFac 0))
66 oveq2 7360 . . . . . . . . 9 (𝑘 = 0 → (𝐵 FallFac 𝑘) = (𝐵 FallFac 0))
6765, 66oveq12d 7370 . . . . . . . 8 (𝑘 = 0 → ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘)) = ((𝐴 FallFac 0) · (𝐵 FallFac 0)))
6861, 67oveq12d 7370 . . . . . . 7 (𝑘 = 0 → ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))) = (1 · ((𝐴 FallFac 0) · (𝐵 FallFac 0))))
6968sumsn 15655 . . . . . 6 ((0 ∈ ℂ ∧ (1 · ((𝐴 FallFac 0) · (𝐵 FallFac 0))) ∈ ℂ) → Σ𝑘 ∈ {0} ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))) = (1 · ((𝐴 FallFac 0) · (𝐵 FallFac 0))))
7054, 56, 69sylancr 587 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {0} ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))) = (1 · ((𝐴 FallFac 0) · (𝐵 FallFac 0))))
71 addcl 11095 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
72 fallfac0 15937 . . . . . 6 ((𝐴 + 𝐵) ∈ ℂ → ((𝐴 + 𝐵) FallFac 0) = 1)
7371, 72syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 0) = 1)
7453, 70, 733eqtr4rd 2779 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 0) = Σ𝑘 ∈ {0} ((0C𝑘) · ((𝐴 FallFac (0 − 𝑘)) · (𝐵 FallFac 𝑘))))
75 simprl 770 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐴 ∈ ℂ)
76 simprr 772 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐵 ∈ ℂ)
77 simpl 482 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → 𝑛 ∈ ℕ0)
78 id 22 . . . . . . 7 (((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘))) → ((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘))))
7975, 76, 77, 78binomfallfaclem2 15949 . . . . . 6 (((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘)))) → ((𝐴 + 𝐵) FallFac (𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))
8079exp31 419 . . . . 5 (𝑛 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘))) → ((𝐴 + 𝐵) FallFac (𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))))
8180a2d 29 . . . 4 (𝑛 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴 FallFac (𝑛𝑘)) · (𝐵 FallFac 𝑘)))) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac (𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴 FallFac ((𝑛 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))))
8213, 24, 35, 46, 74, 81nn0ind 12574 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)))))
8382com12 32 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑁 ∈ ℕ0 → ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)))))
84833impia 1117 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  {csn 4575  (class class class)co 7352  cc 11011  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018  cmin 11351  0cn0 12388  ...cfz 13409  Ccbc 14211  Σcsu 15595   FallFac cfallfac 15913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-sum 15596  df-prod 15813  df-risefac 15915  df-fallfac 15916
This theorem is referenced by:  binomrisefac  15951
  Copyright terms: Public domain W3C validator