MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulexpz Structured version   Visualization version   GIF version

Theorem mulexpz 13640
Description: Integer exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
mulexpz (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))

Proof of Theorem mulexpz
StepHypRef Expression
1 elznn0nn 12155 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
2 simpl 486 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
3 simpl 486 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
42, 3anim12i 616 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
5 mulexp 13639 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
653expa 1120 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
74, 6sylan 583 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
8 simplll 775 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 ∈ ℂ)
9 simplrl 777 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐵 ∈ ℂ)
108, 9mulcld 10818 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴 · 𝐵) ∈ ℂ)
11 recn 10784 . . . . . . 7 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
1211ad2antrl 728 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
13 nnnn0 12062 . . . . . . 7 (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0)
1413ad2antll 729 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ0)
15 expneg2 13609 . . . . . 6 (((𝐴 · 𝐵) ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = (1 / ((𝐴 · 𝐵)↑-𝑁)))
1610, 12, 14, 15syl3anc 1373 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴 · 𝐵)↑𝑁) = (1 / ((𝐴 · 𝐵)↑-𝑁)))
17 expneg2 13609 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
188, 12, 14, 17syl3anc 1373 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
19 expneg2 13609 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐵𝑁) = (1 / (𝐵↑-𝑁)))
209, 12, 14, 19syl3anc 1373 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐵𝑁) = (1 / (𝐵↑-𝑁)))
2118, 20oveq12d 7209 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴𝑁) · (𝐵𝑁)) = ((1 / (𝐴↑-𝑁)) · (1 / (𝐵↑-𝑁))))
22 mulexp 13639 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑-𝑁) = ((𝐴↑-𝑁) · (𝐵↑-𝑁)))
238, 9, 14, 22syl3anc 1373 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴 · 𝐵)↑-𝑁) = ((𝐴↑-𝑁) · (𝐵↑-𝑁)))
2423oveq2d 7207 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / ((𝐴 · 𝐵)↑-𝑁)) = (1 / ((𝐴↑-𝑁) · (𝐵↑-𝑁))))
25 1t1e1 11957 . . . . . . . . 9 (1 · 1) = 1
2625oveq1i 7201 . . . . . . . 8 ((1 · 1) / ((𝐴↑-𝑁) · (𝐵↑-𝑁))) = (1 / ((𝐴↑-𝑁) · (𝐵↑-𝑁)))
2724, 26eqtr4di 2789 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / ((𝐴 · 𝐵)↑-𝑁)) = ((1 · 1) / ((𝐴↑-𝑁) · (𝐵↑-𝑁))))
28 expcl 13618 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴↑-𝑁) ∈ ℂ)
298, 14, 28syl2anc 587 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑁) ∈ ℂ)
30 simpllr 776 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 ≠ 0)
31 nnz 12164 . . . . . . . . . 10 (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
3231ad2antll 729 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ)
33 expne0i 13632 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ -𝑁 ∈ ℤ) → (𝐴↑-𝑁) ≠ 0)
348, 30, 32, 33syl3anc 1373 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑁) ≠ 0)
35 expcl 13618 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐵↑-𝑁) ∈ ℂ)
369, 14, 35syl2anc 587 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐵↑-𝑁) ∈ ℂ)
37 simplrr 778 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐵 ≠ 0)
38 expne0i 13632 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ -𝑁 ∈ ℤ) → (𝐵↑-𝑁) ≠ 0)
399, 37, 32, 38syl3anc 1373 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐵↑-𝑁) ≠ 0)
40 ax-1cn 10752 . . . . . . . . 9 1 ∈ ℂ
41 divmuldiv 11497 . . . . . . . . 9 (((1 ∈ ℂ ∧ 1 ∈ ℂ) ∧ (((𝐴↑-𝑁) ∈ ℂ ∧ (𝐴↑-𝑁) ≠ 0) ∧ ((𝐵↑-𝑁) ∈ ℂ ∧ (𝐵↑-𝑁) ≠ 0))) → ((1 / (𝐴↑-𝑁)) · (1 / (𝐵↑-𝑁))) = ((1 · 1) / ((𝐴↑-𝑁) · (𝐵↑-𝑁))))
4240, 40, 41mpanl12 702 . . . . . . . 8 ((((𝐴↑-𝑁) ∈ ℂ ∧ (𝐴↑-𝑁) ≠ 0) ∧ ((𝐵↑-𝑁) ∈ ℂ ∧ (𝐵↑-𝑁) ≠ 0)) → ((1 / (𝐴↑-𝑁)) · (1 / (𝐵↑-𝑁))) = ((1 · 1) / ((𝐴↑-𝑁) · (𝐵↑-𝑁))))
4329, 34, 36, 39, 42syl22anc 839 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((1 / (𝐴↑-𝑁)) · (1 / (𝐵↑-𝑁))) = ((1 · 1) / ((𝐴↑-𝑁) · (𝐵↑-𝑁))))
4427, 43eqtr4d 2774 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / ((𝐴 · 𝐵)↑-𝑁)) = ((1 / (𝐴↑-𝑁)) · (1 / (𝐵↑-𝑁))))
4521, 44eqtr4d 2774 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴𝑁) · (𝐵𝑁)) = (1 / ((𝐴 · 𝐵)↑-𝑁)))
4616, 45eqtr4d 2774 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
477, 46jaodan 958 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
481, 47sylan2b 597 . 2 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ 𝑁 ∈ ℤ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
49483impa 1112 1 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2112  wne 2932  (class class class)co 7191  cc 10692  cr 10693  0cc0 10694  1c1 10695   · cmul 10699  -cneg 11028   / cdiv 11454  cn 11795  0cn0 12055  cz 12141  cexp 13600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-n0 12056  df-z 12142  df-uz 12404  df-seq 13540  df-exp 13601
This theorem is referenced by:  exprec  13641  knoppndvlem14  34391  knoppndvlem17  34394
  Copyright terms: Public domain W3C validator