Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faclim2 Structured version   Visualization version   GIF version

Theorem faclim2 32866
Description: Another factorial limit due to Euler. (Contributed by Scott Fenton, 17-Dec-2017.)
Hypothesis
Ref Expression
faclim2.1 𝐹 = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀))))
Assertion
Ref Expression
faclim2 (𝑀 ∈ ℕ0𝐹 ⇝ 1)
Distinct variable group:   𝑛,𝑀
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem faclim2
Dummy variables 𝑚 𝑎 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 faclim2.1 . 2 𝐹 = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀))))
2 oveq2 7159 . . . . . . 7 (𝑎 = 0 → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑0))
32oveq2d 7167 . . . . . 6 (𝑎 = 0 → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑0)))
4 oveq2 7159 . . . . . . 7 (𝑎 = 0 → (𝑛 + 𝑎) = (𝑛 + 0))
54fveq2d 6670 . . . . . 6 (𝑎 = 0 → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + 0)))
63, 5oveq12d 7169 . . . . 5 (𝑎 = 0 → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))
76mpteq2dv 5158 . . . 4 (𝑎 = 0 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))))
87breq1d 5072 . . 3 (𝑎 = 0 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ⇝ 1))
9 oveq2 7159 . . . . . . 7 (𝑎 = 𝑚 → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑𝑚))
109oveq2d 7167 . . . . . 6 (𝑎 = 𝑚 → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑𝑚)))
11 oveq2 7159 . . . . . . 7 (𝑎 = 𝑚 → (𝑛 + 𝑎) = (𝑛 + 𝑚))
1211fveq2d 6670 . . . . . 6 (𝑎 = 𝑚 → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + 𝑚)))
1310, 12oveq12d 7169 . . . . 5 (𝑎 = 𝑚 → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))
1413mpteq2dv 5158 . . . 4 (𝑎 = 𝑚 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))))
1514breq1d 5072 . . 3 (𝑎 = 𝑚 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1))
16 oveq2 7159 . . . . . . 7 (𝑎 = (𝑚 + 1) → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑(𝑚 + 1)))
1716oveq2d 7167 . . . . . 6 (𝑎 = (𝑚 + 1) → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))))
18 oveq2 7159 . . . . . . 7 (𝑎 = (𝑚 + 1) → (𝑛 + 𝑎) = (𝑛 + (𝑚 + 1)))
1918fveq2d 6670 . . . . . 6 (𝑎 = (𝑚 + 1) → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + (𝑚 + 1))))
2017, 19oveq12d 7169 . . . . 5 (𝑎 = (𝑚 + 1) → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))
2120mpteq2dv 5158 . . . 4 (𝑎 = (𝑚 + 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))))
2221breq1d 5072 . . 3 (𝑎 = (𝑚 + 1) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ 1))
23 oveq2 7159 . . . . . . 7 (𝑎 = 𝑀 → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑𝑀))
2423oveq2d 7167 . . . . . 6 (𝑎 = 𝑀 → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑𝑀)))
25 oveq2 7159 . . . . . . 7 (𝑎 = 𝑀 → (𝑛 + 𝑎) = (𝑛 + 𝑀))
2625fveq2d 6670 . . . . . 6 (𝑎 = 𝑀 → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + 𝑀)))
2724, 26oveq12d 7169 . . . . 5 (𝑎 = 𝑀 → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀))))
2827mpteq2dv 5158 . . . 4 (𝑎 = 𝑀 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀)))))
2928breq1d 5072 . . 3 (𝑎 = 𝑀 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀)))) ⇝ 1))
30 nnuz 12273 . . . . 5 ℕ = (ℤ‘1)
31 1zzd 12005 . . . . 5 (⊤ → 1 ∈ ℤ)
32 nnex 11636 . . . . . . 7 ℕ ∈ V
3332mptex 6984 . . . . . 6 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ∈ V
3433a1i 11 . . . . 5 (⊤ → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ∈ V)
35 1cnd 10628 . . . . 5 (⊤ → 1 ∈ ℂ)
36 fveq2 6666 . . . . . . . . . 10 (𝑛 = 𝑚 → (!‘𝑛) = (!‘𝑚))
37 oveq1 7158 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑛 + 1) = (𝑚 + 1))
3837oveq1d 7166 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝑛 + 1)↑0) = ((𝑚 + 1)↑0))
3936, 38oveq12d 7169 . . . . . . . . 9 (𝑛 = 𝑚 → ((!‘𝑛) · ((𝑛 + 1)↑0)) = ((!‘𝑚) · ((𝑚 + 1)↑0)))
40 fvoveq1 7174 . . . . . . . . 9 (𝑛 = 𝑚 → (!‘(𝑛 + 0)) = (!‘(𝑚 + 0)))
4139, 40oveq12d 7169 . . . . . . . 8 (𝑛 = 𝑚 → (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))) = (((!‘𝑚) · ((𝑚 + 1)↑0)) / (!‘(𝑚 + 0))))
42 eqid 2825 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))
43 ovex 7184 . . . . . . . 8 (((!‘𝑚) · ((𝑚 + 1)↑0)) / (!‘(𝑚 + 0))) ∈ V
4441, 42, 43fvmpt 6764 . . . . . . 7 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))‘𝑚) = (((!‘𝑚) · ((𝑚 + 1)↑0)) / (!‘(𝑚 + 0))))
45 peano2nn 11642 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
4645nncnd 11646 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℂ)
4746exp0d 13497 . . . . . . . . . 10 (𝑚 ∈ ℕ → ((𝑚 + 1)↑0) = 1)
4847oveq2d 7167 . . . . . . . . 9 (𝑚 ∈ ℕ → ((!‘𝑚) · ((𝑚 + 1)↑0)) = ((!‘𝑚) · 1))
49 nnnn0 11896 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
50 faccl 13636 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0 → (!‘𝑚) ∈ ℕ)
5149, 50syl 17 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (!‘𝑚) ∈ ℕ)
5251nncnd 11646 . . . . . . . . . 10 (𝑚 ∈ ℕ → (!‘𝑚) ∈ ℂ)
5352mulid1d 10650 . . . . . . . . 9 (𝑚 ∈ ℕ → ((!‘𝑚) · 1) = (!‘𝑚))
5448, 53eqtrd 2860 . . . . . . . 8 (𝑚 ∈ ℕ → ((!‘𝑚) · ((𝑚 + 1)↑0)) = (!‘𝑚))
55 nncn 11638 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
5655addid1d 10832 . . . . . . . . 9 (𝑚 ∈ ℕ → (𝑚 + 0) = 𝑚)
5756fveq2d 6670 . . . . . . . 8 (𝑚 ∈ ℕ → (!‘(𝑚 + 0)) = (!‘𝑚))
5854, 57oveq12d 7169 . . . . . . 7 (𝑚 ∈ ℕ → (((!‘𝑚) · ((𝑚 + 1)↑0)) / (!‘(𝑚 + 0))) = ((!‘𝑚) / (!‘𝑚)))
5951nnne0d 11679 . . . . . . . 8 (𝑚 ∈ ℕ → (!‘𝑚) ≠ 0)
6052, 59dividd 11406 . . . . . . 7 (𝑚 ∈ ℕ → ((!‘𝑚) / (!‘𝑚)) = 1)
6144, 58, 603eqtrd 2864 . . . . . 6 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))‘𝑚) = 1)
6261adantl 482 . . . . 5 ((⊤ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))‘𝑚) = 1)
6330, 31, 34, 35, 62climconst 14893 . . . 4 (⊤ → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ⇝ 1)
6463mptru 1537 . . 3 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ⇝ 1
65 1zzd 12005 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → 1 ∈ ℤ)
66 simpr 485 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1)
6732mptex 6984 . . . . . . 7 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ∈ V
6867a1i 11 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ∈ V)
69 1zzd 12005 . . . . . . . 8 (𝑚 ∈ ℕ0 → 1 ∈ ℤ)
70 1cnd 10628 . . . . . . . 8 (𝑚 ∈ ℕ0 → 1 ∈ ℂ)
71 nn0p1nn 11928 . . . . . . . . 9 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ)
7271nnzd 12078 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℤ)
7332mptex 6984 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ∈ V
7473a1i 11 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ∈ V)
75 oveq1 7158 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1))
76 oveq1 7158 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑛 + (𝑚 + 1)) = (𝑘 + (𝑚 + 1)))
7775, 76oveq12d 7169 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝑛 + 1) / (𝑛 + (𝑚 + 1))) = ((𝑘 + 1) / (𝑘 + (𝑚 + 1))))
78 eqid 2825 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) = (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))
79 ovex 7184 . . . . . . . . . 10 ((𝑘 + 1) / (𝑘 + (𝑚 + 1))) ∈ V
8077, 78, 79fvmpt 6764 . . . . . . . . 9 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) = ((𝑘 + 1) / (𝑘 + (𝑚 + 1))))
8180adantl 482 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) = ((𝑘 + 1) / (𝑘 + (𝑚 + 1))))
8230, 69, 70, 72, 74, 81divcnvlin 32850 . . . . . . 7 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ⇝ 1)
8382adantr 481 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ⇝ 1)
84 simpr 485 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
8584nnnn0d 11947 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
86 faccl 13636 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (!‘𝑛) ∈ ℕ)
8785, 86syl 17 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (!‘𝑛) ∈ ℕ)
88 peano2nn 11642 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
89 nnexpcl 13435 . . . . . . . . . . . . . . 15 (((𝑛 + 1) ∈ ℕ ∧ 𝑚 ∈ ℕ0) → ((𝑛 + 1)↑𝑚) ∈ ℕ)
9088, 89sylan 580 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → ((𝑛 + 1)↑𝑚) ∈ ℕ)
9190ancoms 459 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛 + 1)↑𝑚) ∈ ℕ)
9287, 91nnmulcld 11682 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((!‘𝑛) · ((𝑛 + 1)↑𝑚)) ∈ ℕ)
9392nnred 11645 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((!‘𝑛) · ((𝑛 + 1)↑𝑚)) ∈ ℝ)
94 nnnn0addcl 11919 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (𝑛 + 𝑚) ∈ ℕ)
9594ancoms 459 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑛 + 𝑚) ∈ ℕ)
9695nnnn0d 11947 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑛 + 𝑚) ∈ ℕ0)
97 faccl 13636 . . . . . . . . . . . 12 ((𝑛 + 𝑚) ∈ ℕ0 → (!‘(𝑛 + 𝑚)) ∈ ℕ)
9896, 97syl 17 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (!‘(𝑛 + 𝑚)) ∈ ℕ)
9993, 98nndivred 11683 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))) ∈ ℝ)
10099recnd 10661 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))) ∈ ℂ)
101100fmpttd 6874 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))):ℕ⟶ℂ)
102101ffvelrnda 6846 . . . . . . 7 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) ∈ ℂ)
103102adantlr 711 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) ∈ ℂ)
10488adantl 482 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
105104nnred 11645 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ)
10671adantr 481 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
10784, 106nnaddcld 11681 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑛 + (𝑚 + 1)) ∈ ℕ)
108105, 107nndivred 11683 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛 + 1) / (𝑛 + (𝑚 + 1))) ∈ ℝ)
109108recnd 10661 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛 + 1) / (𝑛 + (𝑚 + 1))) ∈ ℂ)
110109fmpttd 6874 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))):ℕ⟶ℂ)
111110ffvelrnda 6846 . . . . . . 7 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) ∈ ℂ)
112111adantlr 711 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) ∈ ℂ)
113 peano2nn 11642 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
114113adantl 482 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
115114nncnd 11646 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℂ)
116 simpl 483 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 𝑚 ∈ ℕ0)
117115, 116expp1d 13504 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑘 + 1)↑(𝑚 + 1)) = (((𝑘 + 1)↑𝑚) · (𝑘 + 1)))
118117oveq2d 7167 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) = ((!‘𝑘) · (((𝑘 + 1)↑𝑚) · (𝑘 + 1))))
119 simpr 485 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
120119nnnn0d 11947 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
121 faccl 13636 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
122120, 121syl 17 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘𝑘) ∈ ℕ)
123122nncnd 11646 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘𝑘) ∈ ℂ)
124 nnexpcl 13435 . . . . . . . . . . . . . . 15 (((𝑘 + 1) ∈ ℕ ∧ 𝑚 ∈ ℕ0) → ((𝑘 + 1)↑𝑚) ∈ ℕ)
125113, 124sylan 580 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → ((𝑘 + 1)↑𝑚) ∈ ℕ)
126125ancoms 459 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑘 + 1)↑𝑚) ∈ ℕ)
127126nncnd 11646 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑘 + 1)↑𝑚) ∈ ℂ)
128123, 127, 115mulassd 10656 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) · (𝑘 + 1)) = ((!‘𝑘) · (((𝑘 + 1)↑𝑚) · (𝑘 + 1))))
129118, 128eqtr4d 2863 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) = (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) · (𝑘 + 1)))
130120, 116nn0addcld 11951 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + 𝑚) ∈ ℕ0)
131 facp1 13631 . . . . . . . . . . . 12 ((𝑘 + 𝑚) ∈ ℕ0 → (!‘((𝑘 + 𝑚) + 1)) = ((!‘(𝑘 + 𝑚)) · ((𝑘 + 𝑚) + 1)))
132130, 131syl 17 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘((𝑘 + 𝑚) + 1)) = ((!‘(𝑘 + 𝑚)) · ((𝑘 + 𝑚) + 1)))
133119nncnd 11646 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
134116nn0cnd 11949 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 𝑚 ∈ ℂ)
135 1cnd 10628 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 1 ∈ ℂ)
136133, 134, 135addassd 10655 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑘 + 𝑚) + 1) = (𝑘 + (𝑚 + 1)))
137136fveq2d 6670 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘((𝑘 + 𝑚) + 1)) = (!‘(𝑘 + (𝑚 + 1))))
138136oveq2d 7167 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((!‘(𝑘 + 𝑚)) · ((𝑘 + 𝑚) + 1)) = ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1))))
139132, 137, 1383eqtr3d 2868 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘(𝑘 + (𝑚 + 1))) = ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1))))
140129, 139oveq12d 7169 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) · (𝑘 + 1)) / ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1)))))
141122, 126nnmulcld 11682 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((!‘𝑘) · ((𝑘 + 1)↑𝑚)) ∈ ℕ)
142141nncnd 11646 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((!‘𝑘) · ((𝑘 + 1)↑𝑚)) ∈ ℂ)
143 faccl 13636 . . . . . . . . . . . 12 ((𝑘 + 𝑚) ∈ ℕ0 → (!‘(𝑘 + 𝑚)) ∈ ℕ)
144130, 143syl 17 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘(𝑘 + 𝑚)) ∈ ℕ)
145144nncnd 11646 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘(𝑘 + 𝑚)) ∈ ℂ)
14671adantr 481 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
147119, 146nnaddcld 11681 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + (𝑚 + 1)) ∈ ℕ)
148147nncnd 11646 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + (𝑚 + 1)) ∈ ℂ)
149144nnne0d 11679 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘(𝑘 + 𝑚)) ≠ 0)
150147nnne0d 11679 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + (𝑚 + 1)) ≠ 0)
151142, 145, 115, 148, 149, 150divmuldivd 11449 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) · (𝑘 + 1)) / ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1)))))
152140, 151eqtr4d 2863 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))))
153 fveq2 6666 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
15475oveq1d 7166 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((𝑛 + 1)↑(𝑚 + 1)) = ((𝑘 + 1)↑(𝑚 + 1)))
155153, 154oveq12d 7169 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) = ((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))))
156 fvoveq1 7174 . . . . . . . . . . 11 (𝑛 = 𝑘 → (!‘(𝑛 + (𝑚 + 1))) = (!‘(𝑘 + (𝑚 + 1))))
157155, 156oveq12d 7169 . . . . . . . . . 10 (𝑛 = 𝑘 → (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))) = (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))))
158 eqid 2825 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))
159 ovex 7184 . . . . . . . . . 10 (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))) ∈ V
160157, 158, 159fvmpt 6764 . . . . . . . . 9 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))))
161160adantl 482 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))))
16275oveq1d 7166 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((𝑛 + 1)↑𝑚) = ((𝑘 + 1)↑𝑚))
163153, 162oveq12d 7169 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((!‘𝑛) · ((𝑛 + 1)↑𝑚)) = ((!‘𝑘) · ((𝑘 + 1)↑𝑚)))
164 fvoveq1 7174 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (!‘(𝑛 + 𝑚)) = (!‘(𝑘 + 𝑚)))
165163, 164oveq12d 7169 . . . . . . . . . . 11 (𝑛 = 𝑘 → (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))) = (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))))
166 eqid 2825 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))
167 ovex 7184 . . . . . . . . . . 11 (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) ∈ V
168165, 166, 167fvmpt 6764 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) = (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))))
169168, 80oveq12d 7169 . . . . . . . . 9 (𝑘 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘)) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))))
170169adantl 482 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘)) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))))
171152, 161, 1703eqtr4d 2870 . . . . . . 7 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘)))
172171adantlr 711 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘)))
17330, 65, 66, 68, 83, 103, 112, 172climmul 14982 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ (1 · 1))
174 1t1e1 11791 . . . . 5 (1 · 1) = 1
175173, 174breqtrdi 5103 . . . 4 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ 1)
176175ex 413 . . 3 (𝑚 ∈ ℕ0 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ 1))
1778, 15, 22, 29, 64, 176nn0ind 12069 . 2 (𝑀 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀)))) ⇝ 1)
1781, 177eqbrtrid 5097 1 (𝑀 ∈ ℕ0𝐹 ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wtru 1531  wcel 2107  Vcvv 3499   class class class wbr 5062  cmpt 5142  cfv 6351  (class class class)co 7151  cc 10527  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534   / cdiv 11289  cn 11630  0cn0 11889  cexp 13422  !cfa 13626  cli 14834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-pm 8402  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12383  df-fl 13155  df-seq 13363  df-exp 13423  df-fac 13627  df-shft 14419  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-rlim 14839
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator