Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faclim2 Structured version   Visualization version   GIF version

Theorem faclim2 35708
Description: Another factorial limit due to Euler. (Contributed by Scott Fenton, 17-Dec-2017.)
Hypothesis
Ref Expression
faclim2.1 𝐹 = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀))))
Assertion
Ref Expression
faclim2 (𝑀 ∈ ℕ0𝐹 ⇝ 1)
Distinct variable group:   𝑛,𝑀
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem faclim2
Dummy variables 𝑚 𝑎 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 faclim2.1 . 2 𝐹 = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀))))
2 oveq2 7377 . . . . . . 7 (𝑎 = 0 → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑0))
32oveq2d 7385 . . . . . 6 (𝑎 = 0 → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑0)))
4 oveq2 7377 . . . . . . 7 (𝑎 = 0 → (𝑛 + 𝑎) = (𝑛 + 0))
54fveq2d 6844 . . . . . 6 (𝑎 = 0 → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + 0)))
63, 5oveq12d 7387 . . . . 5 (𝑎 = 0 → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))
76mpteq2dv 5196 . . . 4 (𝑎 = 0 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))))
87breq1d 5112 . . 3 (𝑎 = 0 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ⇝ 1))
9 oveq2 7377 . . . . . . 7 (𝑎 = 𝑚 → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑𝑚))
109oveq2d 7385 . . . . . 6 (𝑎 = 𝑚 → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑𝑚)))
11 oveq2 7377 . . . . . . 7 (𝑎 = 𝑚 → (𝑛 + 𝑎) = (𝑛 + 𝑚))
1211fveq2d 6844 . . . . . 6 (𝑎 = 𝑚 → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + 𝑚)))
1310, 12oveq12d 7387 . . . . 5 (𝑎 = 𝑚 → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))
1413mpteq2dv 5196 . . . 4 (𝑎 = 𝑚 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))))
1514breq1d 5112 . . 3 (𝑎 = 𝑚 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1))
16 oveq2 7377 . . . . . . 7 (𝑎 = (𝑚 + 1) → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑(𝑚 + 1)))
1716oveq2d 7385 . . . . . 6 (𝑎 = (𝑚 + 1) → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))))
18 oveq2 7377 . . . . . . 7 (𝑎 = (𝑚 + 1) → (𝑛 + 𝑎) = (𝑛 + (𝑚 + 1)))
1918fveq2d 6844 . . . . . 6 (𝑎 = (𝑚 + 1) → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + (𝑚 + 1))))
2017, 19oveq12d 7387 . . . . 5 (𝑎 = (𝑚 + 1) → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))
2120mpteq2dv 5196 . . . 4 (𝑎 = (𝑚 + 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))))
2221breq1d 5112 . . 3 (𝑎 = (𝑚 + 1) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ 1))
23 oveq2 7377 . . . . . . 7 (𝑎 = 𝑀 → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑𝑀))
2423oveq2d 7385 . . . . . 6 (𝑎 = 𝑀 → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑𝑀)))
25 oveq2 7377 . . . . . . 7 (𝑎 = 𝑀 → (𝑛 + 𝑎) = (𝑛 + 𝑀))
2625fveq2d 6844 . . . . . 6 (𝑎 = 𝑀 → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + 𝑀)))
2724, 26oveq12d 7387 . . . . 5 (𝑎 = 𝑀 → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀))))
2827mpteq2dv 5196 . . . 4 (𝑎 = 𝑀 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀)))))
2928breq1d 5112 . . 3 (𝑎 = 𝑀 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀)))) ⇝ 1))
30 nnuz 12812 . . . . 5 ℕ = (ℤ‘1)
31 1zzd 12540 . . . . 5 (⊤ → 1 ∈ ℤ)
32 nnex 12168 . . . . . . 7 ℕ ∈ V
3332mptex 7179 . . . . . 6 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ∈ V
3433a1i 11 . . . . 5 (⊤ → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ∈ V)
35 1cnd 11145 . . . . 5 (⊤ → 1 ∈ ℂ)
36 fveq2 6840 . . . . . . . . . 10 (𝑛 = 𝑚 → (!‘𝑛) = (!‘𝑚))
37 oveq1 7376 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑛 + 1) = (𝑚 + 1))
3837oveq1d 7384 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝑛 + 1)↑0) = ((𝑚 + 1)↑0))
3936, 38oveq12d 7387 . . . . . . . . 9 (𝑛 = 𝑚 → ((!‘𝑛) · ((𝑛 + 1)↑0)) = ((!‘𝑚) · ((𝑚 + 1)↑0)))
40 fvoveq1 7392 . . . . . . . . 9 (𝑛 = 𝑚 → (!‘(𝑛 + 0)) = (!‘(𝑚 + 0)))
4139, 40oveq12d 7387 . . . . . . . 8 (𝑛 = 𝑚 → (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))) = (((!‘𝑚) · ((𝑚 + 1)↑0)) / (!‘(𝑚 + 0))))
42 eqid 2729 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))
43 ovex 7402 . . . . . . . 8 (((!‘𝑚) · ((𝑚 + 1)↑0)) / (!‘(𝑚 + 0))) ∈ V
4441, 42, 43fvmpt 6950 . . . . . . 7 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))‘𝑚) = (((!‘𝑚) · ((𝑚 + 1)↑0)) / (!‘(𝑚 + 0))))
45 peano2nn 12174 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
4645nncnd 12178 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℂ)
4746exp0d 14081 . . . . . . . . . 10 (𝑚 ∈ ℕ → ((𝑚 + 1)↑0) = 1)
4847oveq2d 7385 . . . . . . . . 9 (𝑚 ∈ ℕ → ((!‘𝑚) · ((𝑚 + 1)↑0)) = ((!‘𝑚) · 1))
49 nnnn0 12425 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
50 faccl 14224 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0 → (!‘𝑚) ∈ ℕ)
5149, 50syl 17 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (!‘𝑚) ∈ ℕ)
5251nncnd 12178 . . . . . . . . . 10 (𝑚 ∈ ℕ → (!‘𝑚) ∈ ℂ)
5352mulridd 11167 . . . . . . . . 9 (𝑚 ∈ ℕ → ((!‘𝑚) · 1) = (!‘𝑚))
5448, 53eqtrd 2764 . . . . . . . 8 (𝑚 ∈ ℕ → ((!‘𝑚) · ((𝑚 + 1)↑0)) = (!‘𝑚))
55 nncn 12170 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
5655addridd 11350 . . . . . . . . 9 (𝑚 ∈ ℕ → (𝑚 + 0) = 𝑚)
5756fveq2d 6844 . . . . . . . 8 (𝑚 ∈ ℕ → (!‘(𝑚 + 0)) = (!‘𝑚))
5854, 57oveq12d 7387 . . . . . . 7 (𝑚 ∈ ℕ → (((!‘𝑚) · ((𝑚 + 1)↑0)) / (!‘(𝑚 + 0))) = ((!‘𝑚) / (!‘𝑚)))
5951nnne0d 12212 . . . . . . . 8 (𝑚 ∈ ℕ → (!‘𝑚) ≠ 0)
6052, 59dividd 11932 . . . . . . 7 (𝑚 ∈ ℕ → ((!‘𝑚) / (!‘𝑚)) = 1)
6144, 58, 603eqtrd 2768 . . . . . 6 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))‘𝑚) = 1)
6261adantl 481 . . . . 5 ((⊤ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))‘𝑚) = 1)
6330, 31, 34, 35, 62climconst 15485 . . . 4 (⊤ → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ⇝ 1)
6463mptru 1547 . . 3 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ⇝ 1
65 1zzd 12540 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → 1 ∈ ℤ)
66 simpr 484 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1)
6732mptex 7179 . . . . . . 7 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ∈ V
6867a1i 11 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ∈ V)
69 1zzd 12540 . . . . . . . 8 (𝑚 ∈ ℕ0 → 1 ∈ ℤ)
70 1cnd 11145 . . . . . . . 8 (𝑚 ∈ ℕ0 → 1 ∈ ℂ)
71 nn0p1nn 12457 . . . . . . . . 9 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ)
7271nnzd 12532 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℤ)
7332mptex 7179 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ∈ V
7473a1i 11 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ∈ V)
75 oveq1 7376 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1))
76 oveq1 7376 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑛 + (𝑚 + 1)) = (𝑘 + (𝑚 + 1)))
7775, 76oveq12d 7387 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝑛 + 1) / (𝑛 + (𝑚 + 1))) = ((𝑘 + 1) / (𝑘 + (𝑚 + 1))))
78 eqid 2729 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) = (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))
79 ovex 7402 . . . . . . . . . 10 ((𝑘 + 1) / (𝑘 + (𝑚 + 1))) ∈ V
8077, 78, 79fvmpt 6950 . . . . . . . . 9 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) = ((𝑘 + 1) / (𝑘 + (𝑚 + 1))))
8180adantl 481 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) = ((𝑘 + 1) / (𝑘 + (𝑚 + 1))))
8230, 69, 70, 72, 74, 81divcnvlin 35693 . . . . . . 7 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ⇝ 1)
8382adantr 480 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ⇝ 1)
84 simpr 484 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
8584nnnn0d 12479 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
86 faccl 14224 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (!‘𝑛) ∈ ℕ)
8785, 86syl 17 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (!‘𝑛) ∈ ℕ)
88 peano2nn 12174 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
89 nnexpcl 14015 . . . . . . . . . . . . . . 15 (((𝑛 + 1) ∈ ℕ ∧ 𝑚 ∈ ℕ0) → ((𝑛 + 1)↑𝑚) ∈ ℕ)
9088, 89sylan 580 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → ((𝑛 + 1)↑𝑚) ∈ ℕ)
9190ancoms 458 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛 + 1)↑𝑚) ∈ ℕ)
9287, 91nnmulcld 12215 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((!‘𝑛) · ((𝑛 + 1)↑𝑚)) ∈ ℕ)
9392nnred 12177 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((!‘𝑛) · ((𝑛 + 1)↑𝑚)) ∈ ℝ)
94 nnnn0addcl 12448 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (𝑛 + 𝑚) ∈ ℕ)
9594ancoms 458 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑛 + 𝑚) ∈ ℕ)
9695nnnn0d 12479 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑛 + 𝑚) ∈ ℕ0)
97 faccl 14224 . . . . . . . . . . . 12 ((𝑛 + 𝑚) ∈ ℕ0 → (!‘(𝑛 + 𝑚)) ∈ ℕ)
9896, 97syl 17 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (!‘(𝑛 + 𝑚)) ∈ ℕ)
9993, 98nndivred 12216 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))) ∈ ℝ)
10099recnd 11178 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))) ∈ ℂ)
101100fmpttd 7069 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))):ℕ⟶ℂ)
102101ffvelcdmda 7038 . . . . . . 7 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) ∈ ℂ)
103102adantlr 715 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) ∈ ℂ)
10488adantl 481 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
105104nnred 12177 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ)
10671adantr 480 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
10784, 106nnaddcld 12214 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑛 + (𝑚 + 1)) ∈ ℕ)
108105, 107nndivred 12216 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛 + 1) / (𝑛 + (𝑚 + 1))) ∈ ℝ)
109108recnd 11178 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛 + 1) / (𝑛 + (𝑚 + 1))) ∈ ℂ)
110109fmpttd 7069 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))):ℕ⟶ℂ)
111110ffvelcdmda 7038 . . . . . . 7 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) ∈ ℂ)
112111adantlr 715 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) ∈ ℂ)
113 peano2nn 12174 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
114113adantl 481 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
115114nncnd 12178 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℂ)
116 simpl 482 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 𝑚 ∈ ℕ0)
117115, 116expp1d 14088 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑘 + 1)↑(𝑚 + 1)) = (((𝑘 + 1)↑𝑚) · (𝑘 + 1)))
118117oveq2d 7385 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) = ((!‘𝑘) · (((𝑘 + 1)↑𝑚) · (𝑘 + 1))))
119 simpr 484 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
120119nnnn0d 12479 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
121 faccl 14224 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
122120, 121syl 17 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘𝑘) ∈ ℕ)
123122nncnd 12178 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘𝑘) ∈ ℂ)
124 nnexpcl 14015 . . . . . . . . . . . . . . 15 (((𝑘 + 1) ∈ ℕ ∧ 𝑚 ∈ ℕ0) → ((𝑘 + 1)↑𝑚) ∈ ℕ)
125113, 124sylan 580 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → ((𝑘 + 1)↑𝑚) ∈ ℕ)
126125ancoms 458 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑘 + 1)↑𝑚) ∈ ℕ)
127126nncnd 12178 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑘 + 1)↑𝑚) ∈ ℂ)
128123, 127, 115mulassd 11173 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) · (𝑘 + 1)) = ((!‘𝑘) · (((𝑘 + 1)↑𝑚) · (𝑘 + 1))))
129118, 128eqtr4d 2767 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) = (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) · (𝑘 + 1)))
130120, 116nn0addcld 12483 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + 𝑚) ∈ ℕ0)
131 facp1 14219 . . . . . . . . . . . 12 ((𝑘 + 𝑚) ∈ ℕ0 → (!‘((𝑘 + 𝑚) + 1)) = ((!‘(𝑘 + 𝑚)) · ((𝑘 + 𝑚) + 1)))
132130, 131syl 17 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘((𝑘 + 𝑚) + 1)) = ((!‘(𝑘 + 𝑚)) · ((𝑘 + 𝑚) + 1)))
133119nncnd 12178 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
134116nn0cnd 12481 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 𝑚 ∈ ℂ)
135 1cnd 11145 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 1 ∈ ℂ)
136133, 134, 135addassd 11172 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑘 + 𝑚) + 1) = (𝑘 + (𝑚 + 1)))
137136fveq2d 6844 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘((𝑘 + 𝑚) + 1)) = (!‘(𝑘 + (𝑚 + 1))))
138136oveq2d 7385 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((!‘(𝑘 + 𝑚)) · ((𝑘 + 𝑚) + 1)) = ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1))))
139132, 137, 1383eqtr3d 2772 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘(𝑘 + (𝑚 + 1))) = ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1))))
140129, 139oveq12d 7387 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) · (𝑘 + 1)) / ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1)))))
141122, 126nnmulcld 12215 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((!‘𝑘) · ((𝑘 + 1)↑𝑚)) ∈ ℕ)
142141nncnd 12178 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((!‘𝑘) · ((𝑘 + 1)↑𝑚)) ∈ ℂ)
143 faccl 14224 . . . . . . . . . . . 12 ((𝑘 + 𝑚) ∈ ℕ0 → (!‘(𝑘 + 𝑚)) ∈ ℕ)
144130, 143syl 17 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘(𝑘 + 𝑚)) ∈ ℕ)
145144nncnd 12178 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘(𝑘 + 𝑚)) ∈ ℂ)
14671adantr 480 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
147119, 146nnaddcld 12214 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + (𝑚 + 1)) ∈ ℕ)
148147nncnd 12178 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + (𝑚 + 1)) ∈ ℂ)
149144nnne0d 12212 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘(𝑘 + 𝑚)) ≠ 0)
150147nnne0d 12212 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + (𝑚 + 1)) ≠ 0)
151142, 145, 115, 148, 149, 150divmuldivd 11975 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) · (𝑘 + 1)) / ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1)))))
152140, 151eqtr4d 2767 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))))
153 fveq2 6840 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
15475oveq1d 7384 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((𝑛 + 1)↑(𝑚 + 1)) = ((𝑘 + 1)↑(𝑚 + 1)))
155153, 154oveq12d 7387 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) = ((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))))
156 fvoveq1 7392 . . . . . . . . . . 11 (𝑛 = 𝑘 → (!‘(𝑛 + (𝑚 + 1))) = (!‘(𝑘 + (𝑚 + 1))))
157155, 156oveq12d 7387 . . . . . . . . . 10 (𝑛 = 𝑘 → (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))) = (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))))
158 eqid 2729 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))
159 ovex 7402 . . . . . . . . . 10 (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))) ∈ V
160157, 158, 159fvmpt 6950 . . . . . . . . 9 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))))
161160adantl 481 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))))
16275oveq1d 7384 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((𝑛 + 1)↑𝑚) = ((𝑘 + 1)↑𝑚))
163153, 162oveq12d 7387 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((!‘𝑛) · ((𝑛 + 1)↑𝑚)) = ((!‘𝑘) · ((𝑘 + 1)↑𝑚)))
164 fvoveq1 7392 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (!‘(𝑛 + 𝑚)) = (!‘(𝑘 + 𝑚)))
165163, 164oveq12d 7387 . . . . . . . . . . 11 (𝑛 = 𝑘 → (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))) = (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))))
166 eqid 2729 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))
167 ovex 7402 . . . . . . . . . . 11 (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) ∈ V
168165, 166, 167fvmpt 6950 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) = (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))))
169168, 80oveq12d 7387 . . . . . . . . 9 (𝑘 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘)) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))))
170169adantl 481 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘)) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))))
171152, 161, 1703eqtr4d 2774 . . . . . . 7 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘)))
172171adantlr 715 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘)))
17330, 65, 66, 68, 83, 103, 112, 172climmul 15575 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ (1 · 1))
174 1t1e1 12319 . . . . 5 (1 · 1) = 1
175173, 174breqtrdi 5143 . . . 4 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ 1)
176175ex 412 . . 3 (𝑚 ∈ ℕ0 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ 1))
1778, 15, 22, 29, 64, 176nn0ind 12605 . 2 (𝑀 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀)))) ⇝ 1)
1781, 177eqbrtrid 5137 1 (𝑀 ∈ ℕ0𝐹 ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wtru 1541  wcel 2109  Vcvv 3444   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   / cdiv 11811  cn 12162  0cn0 12418  cexp 14002  !cfa 14214  cli 15426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fl 13730  df-seq 13943  df-exp 14003  df-fac 14215  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator