Step | Hyp | Ref
| Expression |
1 | | faclim2.1 |
. 2
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀)))) |
2 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑎 = 0 → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑0)) |
3 | 2 | oveq2d 7271 |
. . . . . 6
⊢ (𝑎 = 0 → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑0))) |
4 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑎 = 0 → (𝑛 + 𝑎) = (𝑛 + 0)) |
5 | 4 | fveq2d 6760 |
. . . . . 6
⊢ (𝑎 = 0 → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + 0))) |
6 | 3, 5 | oveq12d 7273 |
. . . . 5
⊢ (𝑎 = 0 → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) |
7 | 6 | mpteq2dv 5172 |
. . . 4
⊢ (𝑎 = 0 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))) |
8 | 7 | breq1d 5080 |
. . 3
⊢ (𝑎 = 0 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ⇝ 1)) |
9 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑎 = 𝑚 → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑𝑚)) |
10 | 9 | oveq2d 7271 |
. . . . . 6
⊢ (𝑎 = 𝑚 → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑𝑚))) |
11 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑎 = 𝑚 → (𝑛 + 𝑎) = (𝑛 + 𝑚)) |
12 | 11 | fveq2d 6760 |
. . . . . 6
⊢ (𝑎 = 𝑚 → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + 𝑚))) |
13 | 10, 12 | oveq12d 7273 |
. . . . 5
⊢ (𝑎 = 𝑚 → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) |
14 | 13 | mpteq2dv 5172 |
. . . 4
⊢ (𝑎 = 𝑚 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))) |
15 | 14 | breq1d 5080 |
. . 3
⊢ (𝑎 = 𝑚 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1)) |
16 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑎 = (𝑚 + 1) → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑(𝑚 + 1))) |
17 | 16 | oveq2d 7271 |
. . . . . 6
⊢ (𝑎 = (𝑚 + 1) → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1)))) |
18 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑎 = (𝑚 + 1) → (𝑛 + 𝑎) = (𝑛 + (𝑚 + 1))) |
19 | 18 | fveq2d 6760 |
. . . . . 6
⊢ (𝑎 = (𝑚 + 1) → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + (𝑚 + 1)))) |
20 | 17, 19 | oveq12d 7273 |
. . . . 5
⊢ (𝑎 = (𝑚 + 1) → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) |
21 | 20 | mpteq2dv 5172 |
. . . 4
⊢ (𝑎 = (𝑚 + 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))) |
22 | 21 | breq1d 5080 |
. . 3
⊢ (𝑎 = (𝑚 + 1) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ 1)) |
23 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑎 = 𝑀 → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑𝑀)) |
24 | 23 | oveq2d 7271 |
. . . . . 6
⊢ (𝑎 = 𝑀 → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑𝑀))) |
25 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑎 = 𝑀 → (𝑛 + 𝑎) = (𝑛 + 𝑀)) |
26 | 25 | fveq2d 6760 |
. . . . . 6
⊢ (𝑎 = 𝑀 → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + 𝑀))) |
27 | 24, 26 | oveq12d 7273 |
. . . . 5
⊢ (𝑎 = 𝑀 → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀)))) |
28 | 27 | mpteq2dv 5172 |
. . . 4
⊢ (𝑎 = 𝑀 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀))))) |
29 | 28 | breq1d 5080 |
. . 3
⊢ (𝑎 = 𝑀 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀)))) ⇝ 1)) |
30 | | nnuz 12550 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
31 | | 1zzd 12281 |
. . . . 5
⊢ (⊤
→ 1 ∈ ℤ) |
32 | | nnex 11909 |
. . . . . . 7
⊢ ℕ
∈ V |
33 | 32 | mptex 7081 |
. . . . . 6
⊢ (𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑0)) /
(!‘(𝑛 + 0)))) ∈
V |
34 | 33 | a1i 11 |
. . . . 5
⊢ (⊤
→ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 + 1)↑0))
/ (!‘(𝑛 + 0))))
∈ V) |
35 | | 1cnd 10901 |
. . . . 5
⊢ (⊤
→ 1 ∈ ℂ) |
36 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (!‘𝑛) = (!‘𝑚)) |
37 | | oveq1 7262 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → (𝑛 + 1) = (𝑚 + 1)) |
38 | 37 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → ((𝑛 + 1)↑0) = ((𝑚 + 1)↑0)) |
39 | 36, 38 | oveq12d 7273 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → ((!‘𝑛) · ((𝑛 + 1)↑0)) = ((!‘𝑚) · ((𝑚 + 1)↑0))) |
40 | | fvoveq1 7278 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (!‘(𝑛 + 0)) = (!‘(𝑚 + 0))) |
41 | 39, 40 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))) = (((!‘𝑚) · ((𝑚 + 1)↑0)) / (!‘(𝑚 + 0)))) |
42 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑0)) /
(!‘(𝑛 + 0)))) =
(𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑0)) /
(!‘(𝑛 +
0)))) |
43 | | ovex 7288 |
. . . . . . . 8
⊢
(((!‘𝑚)
· ((𝑚 + 1)↑0))
/ (!‘(𝑚 + 0))) ∈
V |
44 | 41, 42, 43 | fvmpt 6857 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑0)) /
(!‘(𝑛 +
0))))‘𝑚) =
(((!‘𝑚) ·
((𝑚 + 1)↑0)) /
(!‘(𝑚 +
0)))) |
45 | | peano2nn 11915 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ → (𝑚 + 1) ∈
ℕ) |
46 | 45 | nncnd 11919 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ → (𝑚 + 1) ∈
ℂ) |
47 | 46 | exp0d 13786 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ → ((𝑚 + 1)↑0) =
1) |
48 | 47 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ →
((!‘𝑚) ·
((𝑚 + 1)↑0)) =
((!‘𝑚) ·
1)) |
49 | | nnnn0 12170 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℕ0) |
50 | | faccl 13925 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ0
→ (!‘𝑚) ∈
ℕ) |
51 | 49, 50 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ →
(!‘𝑚) ∈
ℕ) |
52 | 51 | nncnd 11919 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ →
(!‘𝑚) ∈
ℂ) |
53 | 52 | mulid1d 10923 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ →
((!‘𝑚) · 1) =
(!‘𝑚)) |
54 | 48, 53 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ →
((!‘𝑚) ·
((𝑚 + 1)↑0)) =
(!‘𝑚)) |
55 | | nncn 11911 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℂ) |
56 | 55 | addid1d 11105 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ → (𝑚 + 0) = 𝑚) |
57 | 56 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ →
(!‘(𝑚 + 0)) =
(!‘𝑚)) |
58 | 54, 57 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ →
(((!‘𝑚) ·
((𝑚 + 1)↑0)) /
(!‘(𝑚 + 0))) =
((!‘𝑚) /
(!‘𝑚))) |
59 | 51 | nnne0d 11953 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ →
(!‘𝑚) ≠
0) |
60 | 52, 59 | dividd 11679 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ →
((!‘𝑚) /
(!‘𝑚)) =
1) |
61 | 44, 58, 60 | 3eqtrd 2782 |
. . . . . 6
⊢ (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑0)) /
(!‘(𝑛 +
0))))‘𝑚) =
1) |
62 | 61 | adantl 481 |
. . . . 5
⊢
((⊤ ∧ 𝑚
∈ ℕ) → ((𝑛
∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))‘𝑚) = 1) |
63 | 30, 31, 34, 35, 62 | climconst 15180 |
. . . 4
⊢ (⊤
→ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 + 1)↑0))
/ (!‘(𝑛 + 0))))
⇝ 1) |
64 | 63 | mptru 1546 |
. . 3
⊢ (𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑0)) /
(!‘(𝑛 + 0)))) ⇝
1 |
65 | | 1zzd 12281 |
. . . . . 6
⊢ ((𝑚 ∈ ℕ0
∧ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚)))) ⇝ 1) → 1 ∈
ℤ) |
66 | | simpr 484 |
. . . . . 6
⊢ ((𝑚 ∈ ℕ0
∧ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) |
67 | 32 | mptex 7081 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ∈ V |
68 | 67 | a1i 11 |
. . . . . 6
⊢ ((𝑚 ∈ ℕ0
∧ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ∈ V) |
69 | | 1zzd 12281 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ 1 ∈ ℤ) |
70 | | 1cnd 10901 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ 1 ∈ ℂ) |
71 | | nn0p1nn 12202 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℕ) |
72 | 71 | nnzd 12354 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℤ) |
73 | 32 | mptex 7081 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ∈ V |
74 | 73 | a1i 11 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ (𝑛 ∈ ℕ
↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ∈ V) |
75 | | oveq1 7262 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1)) |
76 | | oveq1 7262 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → (𝑛 + (𝑚 + 1)) = (𝑘 + (𝑚 + 1))) |
77 | 75, 76 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → ((𝑛 + 1) / (𝑛 + (𝑚 + 1))) = ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))) |
78 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) = (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) |
79 | | ovex 7288 |
. . . . . . . . . 10
⊢ ((𝑘 + 1) / (𝑘 + (𝑚 + 1))) ∈ V |
80 | 77, 78, 79 | fvmpt 6857 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) = ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))) |
81 | 80 | adantl 481 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((𝑛 ∈ ℕ
↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) = ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))) |
82 | 30, 69, 70, 72, 74, 81 | divcnvlin 33604 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ0
→ (𝑛 ∈ ℕ
↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ⇝ 1) |
83 | 82 | adantr 480 |
. . . . . 6
⊢ ((𝑚 ∈ ℕ0
∧ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ⇝ 1) |
84 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ 𝑛 ∈
ℕ) |
85 | 84 | nnnn0d 12223 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ 𝑛 ∈
ℕ0) |
86 | | faccl 13925 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ0
→ (!‘𝑛) ∈
ℕ) |
87 | 85, 86 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (!‘𝑛) ∈
ℕ) |
88 | | peano2nn 11915 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℕ) |
89 | | nnexpcl 13723 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 + 1) ∈ ℕ ∧ 𝑚 ∈ ℕ0)
→ ((𝑛 + 1)↑𝑚) ∈
ℕ) |
90 | 88, 89 | sylan 579 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ0)
→ ((𝑛 + 1)↑𝑚) ∈
ℕ) |
91 | 90 | ancoms 458 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ ((𝑛 + 1)↑𝑚) ∈
ℕ) |
92 | 87, 91 | nnmulcld 11956 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ ((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) ∈
ℕ) |
93 | 92 | nnred 11918 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ ((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) ∈
ℝ) |
94 | | nnnn0addcl 12193 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ0)
→ (𝑛 + 𝑚) ∈
ℕ) |
95 | 94 | ancoms 458 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (𝑛 + 𝑚) ∈
ℕ) |
96 | 95 | nnnn0d 12223 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (𝑛 + 𝑚) ∈
ℕ0) |
97 | | faccl 13925 |
. . . . . . . . . . . 12
⊢ ((𝑛 + 𝑚) ∈ ℕ0 →
(!‘(𝑛 + 𝑚)) ∈
ℕ) |
98 | 96, 97 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (!‘(𝑛 + 𝑚)) ∈
ℕ) |
99 | 93, 98 | nndivred 11957 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚))) ∈
ℝ) |
100 | 99 | recnd 10934 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚))) ∈
ℂ) |
101 | 100 | fmpttd 6971 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚)))):ℕ⟶ℂ) |
102 | 101 | ffvelrnda 6943 |
. . . . . . 7
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚))))‘𝑘) ∈ ℂ) |
103 | 102 | adantlr 711 |
. . . . . 6
⊢ (((𝑚 ∈ ℕ0
∧ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚)))) ⇝ 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) ∈ ℂ) |
104 | 88 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (𝑛 + 1) ∈
ℕ) |
105 | 104 | nnred 11918 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (𝑛 + 1) ∈
ℝ) |
106 | 71 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (𝑚 + 1) ∈
ℕ) |
107 | 84, 106 | nnaddcld 11955 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (𝑛 + (𝑚 + 1)) ∈
ℕ) |
108 | 105, 107 | nndivred 11957 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))) ∈ ℝ) |
109 | 108 | recnd 10934 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))) ∈ ℂ) |
110 | 109 | fmpttd 6971 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ (𝑛 ∈ ℕ
↦ ((𝑛 + 1) / (𝑛 + (𝑚 +
1)))):ℕ⟶ℂ) |
111 | 110 | ffvelrnda 6943 |
. . . . . . 7
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((𝑛 ∈ ℕ
↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) ∈ ℂ) |
112 | 111 | adantlr 711 |
. . . . . 6
⊢ (((𝑚 ∈ ℕ0
∧ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚)))) ⇝ 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) ∈ ℂ) |
113 | | peano2nn 11915 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) |
114 | 113 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (𝑘 + 1) ∈
ℕ) |
115 | 114 | nncnd 11919 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (𝑘 + 1) ∈
ℂ) |
116 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ 𝑚 ∈
ℕ0) |
117 | 115, 116 | expp1d 13793 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((𝑘 + 1)↑(𝑚 + 1)) = (((𝑘 + 1)↑𝑚) · (𝑘 + 1))) |
118 | 117 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((!‘𝑘)
· ((𝑘 +
1)↑(𝑚 + 1))) =
((!‘𝑘) ·
(((𝑘 + 1)↑𝑚) · (𝑘 + 1)))) |
119 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ 𝑘 ∈
ℕ) |
120 | 119 | nnnn0d 12223 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ 𝑘 ∈
ℕ0) |
121 | | faccl 13925 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ0
→ (!‘𝑘) ∈
ℕ) |
122 | 120, 121 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (!‘𝑘) ∈
ℕ) |
123 | 122 | nncnd 11919 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (!‘𝑘) ∈
ℂ) |
124 | | nnexpcl 13723 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 + 1) ∈ ℕ ∧ 𝑚 ∈ ℕ0)
→ ((𝑘 + 1)↑𝑚) ∈
ℕ) |
125 | 113, 124 | sylan 579 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ ∧ 𝑚 ∈ ℕ0)
→ ((𝑘 + 1)↑𝑚) ∈
ℕ) |
126 | 125 | ancoms 458 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((𝑘 + 1)↑𝑚) ∈
ℕ) |
127 | 126 | nncnd 11919 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((𝑘 + 1)↑𝑚) ∈
ℂ) |
128 | 123, 127,
115 | mulassd 10929 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (((!‘𝑘)
· ((𝑘 +
1)↑𝑚)) · (𝑘 + 1)) = ((!‘𝑘) · (((𝑘 + 1)↑𝑚) · (𝑘 + 1)))) |
129 | 118, 128 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((!‘𝑘)
· ((𝑘 +
1)↑(𝑚 + 1))) =
(((!‘𝑘) ·
((𝑘 + 1)↑𝑚)) · (𝑘 + 1))) |
130 | 120, 116 | nn0addcld 12227 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (𝑘 + 𝑚) ∈
ℕ0) |
131 | | facp1 13920 |
. . . . . . . . . . . 12
⊢ ((𝑘 + 𝑚) ∈ ℕ0 →
(!‘((𝑘 + 𝑚) + 1)) = ((!‘(𝑘 + 𝑚)) · ((𝑘 + 𝑚) + 1))) |
132 | 130, 131 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (!‘((𝑘 + 𝑚) + 1)) = ((!‘(𝑘 + 𝑚)) · ((𝑘 + 𝑚) + 1))) |
133 | 119 | nncnd 11919 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ 𝑘 ∈
ℂ) |
134 | 116 | nn0cnd 12225 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ 𝑚 ∈
ℂ) |
135 | | 1cnd 10901 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ 1 ∈ ℂ) |
136 | 133, 134,
135 | addassd 10928 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((𝑘 + 𝑚) + 1) = (𝑘 + (𝑚 + 1))) |
137 | 136 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (!‘((𝑘 + 𝑚) + 1)) = (!‘(𝑘 + (𝑚 + 1)))) |
138 | 136 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((!‘(𝑘 + 𝑚)) · ((𝑘 + 𝑚) + 1)) = ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1)))) |
139 | 132, 137,
138 | 3eqtr3d 2786 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (!‘(𝑘 + (𝑚 + 1))) = ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1)))) |
140 | 129, 139 | oveq12d 7273 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (((!‘𝑘)
· ((𝑘 +
1)↑(𝑚 + 1))) /
(!‘(𝑘 + (𝑚 + 1)))) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) · (𝑘 + 1)) / ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1))))) |
141 | 122, 126 | nnmulcld 11956 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((!‘𝑘)
· ((𝑘 +
1)↑𝑚)) ∈
ℕ) |
142 | 141 | nncnd 11919 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((!‘𝑘)
· ((𝑘 +
1)↑𝑚)) ∈
ℂ) |
143 | | faccl 13925 |
. . . . . . . . . . . 12
⊢ ((𝑘 + 𝑚) ∈ ℕ0 →
(!‘(𝑘 + 𝑚)) ∈
ℕ) |
144 | 130, 143 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (!‘(𝑘 + 𝑚)) ∈
ℕ) |
145 | 144 | nncnd 11919 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (!‘(𝑘 + 𝑚)) ∈
ℂ) |
146 | 71 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (𝑚 + 1) ∈
ℕ) |
147 | 119, 146 | nnaddcld 11955 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (𝑘 + (𝑚 + 1)) ∈
ℕ) |
148 | 147 | nncnd 11919 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (𝑘 + (𝑚 + 1)) ∈
ℂ) |
149 | 144 | nnne0d 11953 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (!‘(𝑘 + 𝑚)) ≠ 0) |
150 | 147 | nnne0d 11953 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (𝑘 + (𝑚 + 1)) ≠ 0) |
151 | 142, 145,
115, 148, 149, 150 | divmuldivd 11722 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((((!‘𝑘)
· ((𝑘 +
1)↑𝑚)) /
(!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) · (𝑘 + 1)) / ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1))))) |
152 | 140, 151 | eqtr4d 2781 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (((!‘𝑘)
· ((𝑘 +
1)↑(𝑚 + 1))) /
(!‘(𝑘 + (𝑚 + 1)))) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1))))) |
153 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘)) |
154 | 75 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → ((𝑛 + 1)↑(𝑚 + 1)) = ((𝑘 + 1)↑(𝑚 + 1))) |
155 | 153, 154 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → ((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) = ((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1)))) |
156 | | fvoveq1 7278 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → (!‘(𝑛 + (𝑚 + 1))) = (!‘(𝑘 + (𝑚 + 1)))) |
157 | 155, 156 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))) = (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1))))) |
158 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) |
159 | | ovex 7288 |
. . . . . . . . . 10
⊢
(((!‘𝑘)
· ((𝑘 +
1)↑(𝑚 + 1))) /
(!‘(𝑘 + (𝑚 + 1)))) ∈
V |
160 | 157, 158,
159 | fvmpt 6857 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1))))) |
161 | 160 | adantl 481 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑(𝑚 + 1))) /
(!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1))))) |
162 | 75 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → ((𝑛 + 1)↑𝑚) = ((𝑘 + 1)↑𝑚)) |
163 | 153, 162 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → ((!‘𝑛) · ((𝑛 + 1)↑𝑚)) = ((!‘𝑘) · ((𝑘 + 1)↑𝑚))) |
164 | | fvoveq1 7278 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (!‘(𝑛 + 𝑚)) = (!‘(𝑘 + 𝑚))) |
165 | 163, 164 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))) = (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚)))) |
166 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) |
167 | | ovex 7288 |
. . . . . . . . . . 11
⊢
(((!‘𝑘)
· ((𝑘 +
1)↑𝑚)) /
(!‘(𝑘 + 𝑚))) ∈ V |
168 | 165, 166,
167 | fvmpt 6857 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) = (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚)))) |
169 | 168, 80 | oveq12d 7273 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (((𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘)) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1))))) |
170 | 169 | adantl 481 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (((𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘)) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1))))) |
171 | 152, 161,
170 | 3eqtr4d 2788 |
. . . . . . 7
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑(𝑚 + 1))) /
(!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘))) |
172 | 171 | adantlr 711 |
. . . . . 6
⊢ (((𝑚 ∈ ℕ0
∧ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚)))) ⇝ 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘))) |
173 | 30, 65, 66, 68, 83, 103, 112, 172 | climmul 15270 |
. . . . 5
⊢ ((𝑚 ∈ ℕ0
∧ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ (1 ·
1)) |
174 | | 1t1e1 12065 |
. . . . 5
⊢ (1
· 1) = 1 |
175 | 173, 174 | breqtrdi 5111 |
. . . 4
⊢ ((𝑚 ∈ ℕ0
∧ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ 1) |
176 | 175 | ex 412 |
. . 3
⊢ (𝑚 ∈ ℕ0
→ ((𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚)))) ⇝ 1 → (𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ 1)) |
177 | 8, 15, 22, 29, 64, 176 | nn0ind 12345 |
. 2
⊢ (𝑀 ∈ ℕ0
→ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑀)) /
(!‘(𝑛 + 𝑀)))) ⇝ 1) |
178 | 1, 177 | eqbrtrid 5105 |
1
⊢ (𝑀 ∈ ℕ0
→ 𝐹 ⇝
1) |