Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faclim2 Structured version   Visualization version   GIF version

Theorem faclim2 32980
Description: Another factorial limit due to Euler. (Contributed by Scott Fenton, 17-Dec-2017.)
Hypothesis
Ref Expression
faclim2.1 𝐹 = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀))))
Assertion
Ref Expression
faclim2 (𝑀 ∈ ℕ0𝐹 ⇝ 1)
Distinct variable group:   𝑛,𝑀
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem faclim2
Dummy variables 𝑚 𝑎 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 faclim2.1 . 2 𝐹 = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀))))
2 oveq2 7164 . . . . . . 7 (𝑎 = 0 → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑0))
32oveq2d 7172 . . . . . 6 (𝑎 = 0 → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑0)))
4 oveq2 7164 . . . . . . 7 (𝑎 = 0 → (𝑛 + 𝑎) = (𝑛 + 0))
54fveq2d 6674 . . . . . 6 (𝑎 = 0 → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + 0)))
63, 5oveq12d 7174 . . . . 5 (𝑎 = 0 → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))
76mpteq2dv 5162 . . . 4 (𝑎 = 0 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))))
87breq1d 5076 . . 3 (𝑎 = 0 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ⇝ 1))
9 oveq2 7164 . . . . . . 7 (𝑎 = 𝑚 → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑𝑚))
109oveq2d 7172 . . . . . 6 (𝑎 = 𝑚 → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑𝑚)))
11 oveq2 7164 . . . . . . 7 (𝑎 = 𝑚 → (𝑛 + 𝑎) = (𝑛 + 𝑚))
1211fveq2d 6674 . . . . . 6 (𝑎 = 𝑚 → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + 𝑚)))
1310, 12oveq12d 7174 . . . . 5 (𝑎 = 𝑚 → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))
1413mpteq2dv 5162 . . . 4 (𝑎 = 𝑚 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))))
1514breq1d 5076 . . 3 (𝑎 = 𝑚 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1))
16 oveq2 7164 . . . . . . 7 (𝑎 = (𝑚 + 1) → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑(𝑚 + 1)))
1716oveq2d 7172 . . . . . 6 (𝑎 = (𝑚 + 1) → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))))
18 oveq2 7164 . . . . . . 7 (𝑎 = (𝑚 + 1) → (𝑛 + 𝑎) = (𝑛 + (𝑚 + 1)))
1918fveq2d 6674 . . . . . 6 (𝑎 = (𝑚 + 1) → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + (𝑚 + 1))))
2017, 19oveq12d 7174 . . . . 5 (𝑎 = (𝑚 + 1) → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))
2120mpteq2dv 5162 . . . 4 (𝑎 = (𝑚 + 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))))
2221breq1d 5076 . . 3 (𝑎 = (𝑚 + 1) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ 1))
23 oveq2 7164 . . . . . . 7 (𝑎 = 𝑀 → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑𝑀))
2423oveq2d 7172 . . . . . 6 (𝑎 = 𝑀 → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑𝑀)))
25 oveq2 7164 . . . . . . 7 (𝑎 = 𝑀 → (𝑛 + 𝑎) = (𝑛 + 𝑀))
2625fveq2d 6674 . . . . . 6 (𝑎 = 𝑀 → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + 𝑀)))
2724, 26oveq12d 7174 . . . . 5 (𝑎 = 𝑀 → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀))))
2827mpteq2dv 5162 . . . 4 (𝑎 = 𝑀 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀)))))
2928breq1d 5076 . . 3 (𝑎 = 𝑀 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀)))) ⇝ 1))
30 nnuz 12282 . . . . 5 ℕ = (ℤ‘1)
31 1zzd 12014 . . . . 5 (⊤ → 1 ∈ ℤ)
32 nnex 11644 . . . . . . 7 ℕ ∈ V
3332mptex 6986 . . . . . 6 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ∈ V
3433a1i 11 . . . . 5 (⊤ → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ∈ V)
35 1cnd 10636 . . . . 5 (⊤ → 1 ∈ ℂ)
36 fveq2 6670 . . . . . . . . . 10 (𝑛 = 𝑚 → (!‘𝑛) = (!‘𝑚))
37 oveq1 7163 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑛 + 1) = (𝑚 + 1))
3837oveq1d 7171 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝑛 + 1)↑0) = ((𝑚 + 1)↑0))
3936, 38oveq12d 7174 . . . . . . . . 9 (𝑛 = 𝑚 → ((!‘𝑛) · ((𝑛 + 1)↑0)) = ((!‘𝑚) · ((𝑚 + 1)↑0)))
40 fvoveq1 7179 . . . . . . . . 9 (𝑛 = 𝑚 → (!‘(𝑛 + 0)) = (!‘(𝑚 + 0)))
4139, 40oveq12d 7174 . . . . . . . 8 (𝑛 = 𝑚 → (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))) = (((!‘𝑚) · ((𝑚 + 1)↑0)) / (!‘(𝑚 + 0))))
42 eqid 2821 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))
43 ovex 7189 . . . . . . . 8 (((!‘𝑚) · ((𝑚 + 1)↑0)) / (!‘(𝑚 + 0))) ∈ V
4441, 42, 43fvmpt 6768 . . . . . . 7 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))‘𝑚) = (((!‘𝑚) · ((𝑚 + 1)↑0)) / (!‘(𝑚 + 0))))
45 peano2nn 11650 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
4645nncnd 11654 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℂ)
4746exp0d 13505 . . . . . . . . . 10 (𝑚 ∈ ℕ → ((𝑚 + 1)↑0) = 1)
4847oveq2d 7172 . . . . . . . . 9 (𝑚 ∈ ℕ → ((!‘𝑚) · ((𝑚 + 1)↑0)) = ((!‘𝑚) · 1))
49 nnnn0 11905 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
50 faccl 13644 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0 → (!‘𝑚) ∈ ℕ)
5149, 50syl 17 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (!‘𝑚) ∈ ℕ)
5251nncnd 11654 . . . . . . . . . 10 (𝑚 ∈ ℕ → (!‘𝑚) ∈ ℂ)
5352mulid1d 10658 . . . . . . . . 9 (𝑚 ∈ ℕ → ((!‘𝑚) · 1) = (!‘𝑚))
5448, 53eqtrd 2856 . . . . . . . 8 (𝑚 ∈ ℕ → ((!‘𝑚) · ((𝑚 + 1)↑0)) = (!‘𝑚))
55 nncn 11646 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
5655addid1d 10840 . . . . . . . . 9 (𝑚 ∈ ℕ → (𝑚 + 0) = 𝑚)
5756fveq2d 6674 . . . . . . . 8 (𝑚 ∈ ℕ → (!‘(𝑚 + 0)) = (!‘𝑚))
5854, 57oveq12d 7174 . . . . . . 7 (𝑚 ∈ ℕ → (((!‘𝑚) · ((𝑚 + 1)↑0)) / (!‘(𝑚 + 0))) = ((!‘𝑚) / (!‘𝑚)))
5951nnne0d 11688 . . . . . . . 8 (𝑚 ∈ ℕ → (!‘𝑚) ≠ 0)
6052, 59dividd 11414 . . . . . . 7 (𝑚 ∈ ℕ → ((!‘𝑚) / (!‘𝑚)) = 1)
6144, 58, 603eqtrd 2860 . . . . . 6 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))‘𝑚) = 1)
6261adantl 484 . . . . 5 ((⊤ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))‘𝑚) = 1)
6330, 31, 34, 35, 62climconst 14900 . . . 4 (⊤ → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ⇝ 1)
6463mptru 1544 . . 3 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ⇝ 1
65 1zzd 12014 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → 1 ∈ ℤ)
66 simpr 487 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1)
6732mptex 6986 . . . . . . 7 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ∈ V
6867a1i 11 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ∈ V)
69 1zzd 12014 . . . . . . . 8 (𝑚 ∈ ℕ0 → 1 ∈ ℤ)
70 1cnd 10636 . . . . . . . 8 (𝑚 ∈ ℕ0 → 1 ∈ ℂ)
71 nn0p1nn 11937 . . . . . . . . 9 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ)
7271nnzd 12087 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℤ)
7332mptex 6986 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ∈ V
7473a1i 11 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ∈ V)
75 oveq1 7163 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1))
76 oveq1 7163 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑛 + (𝑚 + 1)) = (𝑘 + (𝑚 + 1)))
7775, 76oveq12d 7174 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝑛 + 1) / (𝑛 + (𝑚 + 1))) = ((𝑘 + 1) / (𝑘 + (𝑚 + 1))))
78 eqid 2821 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) = (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))
79 ovex 7189 . . . . . . . . . 10 ((𝑘 + 1) / (𝑘 + (𝑚 + 1))) ∈ V
8077, 78, 79fvmpt 6768 . . . . . . . . 9 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) = ((𝑘 + 1) / (𝑘 + (𝑚 + 1))))
8180adantl 484 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) = ((𝑘 + 1) / (𝑘 + (𝑚 + 1))))
8230, 69, 70, 72, 74, 81divcnvlin 32964 . . . . . . 7 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ⇝ 1)
8382adantr 483 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ⇝ 1)
84 simpr 487 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
8584nnnn0d 11956 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
86 faccl 13644 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (!‘𝑛) ∈ ℕ)
8785, 86syl 17 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (!‘𝑛) ∈ ℕ)
88 peano2nn 11650 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
89 nnexpcl 13443 . . . . . . . . . . . . . . 15 (((𝑛 + 1) ∈ ℕ ∧ 𝑚 ∈ ℕ0) → ((𝑛 + 1)↑𝑚) ∈ ℕ)
9088, 89sylan 582 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → ((𝑛 + 1)↑𝑚) ∈ ℕ)
9190ancoms 461 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛 + 1)↑𝑚) ∈ ℕ)
9287, 91nnmulcld 11691 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((!‘𝑛) · ((𝑛 + 1)↑𝑚)) ∈ ℕ)
9392nnred 11653 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((!‘𝑛) · ((𝑛 + 1)↑𝑚)) ∈ ℝ)
94 nnnn0addcl 11928 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (𝑛 + 𝑚) ∈ ℕ)
9594ancoms 461 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑛 + 𝑚) ∈ ℕ)
9695nnnn0d 11956 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑛 + 𝑚) ∈ ℕ0)
97 faccl 13644 . . . . . . . . . . . 12 ((𝑛 + 𝑚) ∈ ℕ0 → (!‘(𝑛 + 𝑚)) ∈ ℕ)
9896, 97syl 17 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (!‘(𝑛 + 𝑚)) ∈ ℕ)
9993, 98nndivred 11692 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))) ∈ ℝ)
10099recnd 10669 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))) ∈ ℂ)
101100fmpttd 6879 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))):ℕ⟶ℂ)
102101ffvelrnda 6851 . . . . . . 7 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) ∈ ℂ)
103102adantlr 713 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) ∈ ℂ)
10488adantl 484 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
105104nnred 11653 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ)
10671adantr 483 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
10784, 106nnaddcld 11690 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑛 + (𝑚 + 1)) ∈ ℕ)
108105, 107nndivred 11692 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛 + 1) / (𝑛 + (𝑚 + 1))) ∈ ℝ)
109108recnd 10669 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛 + 1) / (𝑛 + (𝑚 + 1))) ∈ ℂ)
110109fmpttd 6879 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))):ℕ⟶ℂ)
111110ffvelrnda 6851 . . . . . . 7 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) ∈ ℂ)
112111adantlr 713 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) ∈ ℂ)
113 peano2nn 11650 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
114113adantl 484 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
115114nncnd 11654 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℂ)
116 simpl 485 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 𝑚 ∈ ℕ0)
117115, 116expp1d 13512 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑘 + 1)↑(𝑚 + 1)) = (((𝑘 + 1)↑𝑚) · (𝑘 + 1)))
118117oveq2d 7172 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) = ((!‘𝑘) · (((𝑘 + 1)↑𝑚) · (𝑘 + 1))))
119 simpr 487 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
120119nnnn0d 11956 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
121 faccl 13644 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
122120, 121syl 17 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘𝑘) ∈ ℕ)
123122nncnd 11654 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘𝑘) ∈ ℂ)
124 nnexpcl 13443 . . . . . . . . . . . . . . 15 (((𝑘 + 1) ∈ ℕ ∧ 𝑚 ∈ ℕ0) → ((𝑘 + 1)↑𝑚) ∈ ℕ)
125113, 124sylan 582 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → ((𝑘 + 1)↑𝑚) ∈ ℕ)
126125ancoms 461 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑘 + 1)↑𝑚) ∈ ℕ)
127126nncnd 11654 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑘 + 1)↑𝑚) ∈ ℂ)
128123, 127, 115mulassd 10664 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) · (𝑘 + 1)) = ((!‘𝑘) · (((𝑘 + 1)↑𝑚) · (𝑘 + 1))))
129118, 128eqtr4d 2859 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) = (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) · (𝑘 + 1)))
130120, 116nn0addcld 11960 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + 𝑚) ∈ ℕ0)
131 facp1 13639 . . . . . . . . . . . 12 ((𝑘 + 𝑚) ∈ ℕ0 → (!‘((𝑘 + 𝑚) + 1)) = ((!‘(𝑘 + 𝑚)) · ((𝑘 + 𝑚) + 1)))
132130, 131syl 17 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘((𝑘 + 𝑚) + 1)) = ((!‘(𝑘 + 𝑚)) · ((𝑘 + 𝑚) + 1)))
133119nncnd 11654 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
134116nn0cnd 11958 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 𝑚 ∈ ℂ)
135 1cnd 10636 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 1 ∈ ℂ)
136133, 134, 135addassd 10663 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑘 + 𝑚) + 1) = (𝑘 + (𝑚 + 1)))
137136fveq2d 6674 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘((𝑘 + 𝑚) + 1)) = (!‘(𝑘 + (𝑚 + 1))))
138136oveq2d 7172 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((!‘(𝑘 + 𝑚)) · ((𝑘 + 𝑚) + 1)) = ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1))))
139132, 137, 1383eqtr3d 2864 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘(𝑘 + (𝑚 + 1))) = ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1))))
140129, 139oveq12d 7174 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) · (𝑘 + 1)) / ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1)))))
141122, 126nnmulcld 11691 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((!‘𝑘) · ((𝑘 + 1)↑𝑚)) ∈ ℕ)
142141nncnd 11654 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((!‘𝑘) · ((𝑘 + 1)↑𝑚)) ∈ ℂ)
143 faccl 13644 . . . . . . . . . . . 12 ((𝑘 + 𝑚) ∈ ℕ0 → (!‘(𝑘 + 𝑚)) ∈ ℕ)
144130, 143syl 17 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘(𝑘 + 𝑚)) ∈ ℕ)
145144nncnd 11654 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘(𝑘 + 𝑚)) ∈ ℂ)
14671adantr 483 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
147119, 146nnaddcld 11690 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + (𝑚 + 1)) ∈ ℕ)
148147nncnd 11654 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + (𝑚 + 1)) ∈ ℂ)
149144nnne0d 11688 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘(𝑘 + 𝑚)) ≠ 0)
150147nnne0d 11688 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + (𝑚 + 1)) ≠ 0)
151142, 145, 115, 148, 149, 150divmuldivd 11457 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) · (𝑘 + 1)) / ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1)))))
152140, 151eqtr4d 2859 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))))
153 fveq2 6670 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
15475oveq1d 7171 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((𝑛 + 1)↑(𝑚 + 1)) = ((𝑘 + 1)↑(𝑚 + 1)))
155153, 154oveq12d 7174 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) = ((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))))
156 fvoveq1 7179 . . . . . . . . . . 11 (𝑛 = 𝑘 → (!‘(𝑛 + (𝑚 + 1))) = (!‘(𝑘 + (𝑚 + 1))))
157155, 156oveq12d 7174 . . . . . . . . . 10 (𝑛 = 𝑘 → (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))) = (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))))
158 eqid 2821 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))
159 ovex 7189 . . . . . . . . . 10 (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))) ∈ V
160157, 158, 159fvmpt 6768 . . . . . . . . 9 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))))
161160adantl 484 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))))
16275oveq1d 7171 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((𝑛 + 1)↑𝑚) = ((𝑘 + 1)↑𝑚))
163153, 162oveq12d 7174 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((!‘𝑛) · ((𝑛 + 1)↑𝑚)) = ((!‘𝑘) · ((𝑘 + 1)↑𝑚)))
164 fvoveq1 7179 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (!‘(𝑛 + 𝑚)) = (!‘(𝑘 + 𝑚)))
165163, 164oveq12d 7174 . . . . . . . . . . 11 (𝑛 = 𝑘 → (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))) = (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))))
166 eqid 2821 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))
167 ovex 7189 . . . . . . . . . . 11 (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) ∈ V
168165, 166, 167fvmpt 6768 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) = (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))))
169168, 80oveq12d 7174 . . . . . . . . 9 (𝑘 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘)) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))))
170169adantl 484 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘)) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))))
171152, 161, 1703eqtr4d 2866 . . . . . . 7 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘)))
172171adantlr 713 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘)))
17330, 65, 66, 68, 83, 103, 112, 172climmul 14989 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ (1 · 1))
174 1t1e1 11800 . . . . 5 (1 · 1) = 1
175173, 174breqtrdi 5107 . . . 4 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ 1)
176175ex 415 . . 3 (𝑚 ∈ ℕ0 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ 1))
1778, 15, 22, 29, 64, 176nn0ind 12078 . 2 (𝑀 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀)))) ⇝ 1)
1781, 177eqbrtrid 5101 1 (𝑀 ∈ ℕ0𝐹 ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wtru 1538  wcel 2114  Vcvv 3494   class class class wbr 5066  cmpt 5146  cfv 6355  (class class class)co 7156  cc 10535  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   / cdiv 11297  cn 11638  0cn0 11898  cexp 13430  !cfa 13634  cli 14841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fl 13163  df-seq 13371  df-exp 13431  df-fac 13635  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator