MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodfrec Structured version   Visualization version   GIF version

Theorem prodfrec 15802
Description: The reciprocal of an infinite product. (Contributed by Scott Fenton, 15-Jan-2018.)
Hypotheses
Ref Expression
prodfn0.1 (𝜑𝑁 ∈ (ℤ𝑀))
prodfn0.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
prodfn0.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ≠ 0)
prodfrec.4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) = (1 / (𝐹𝑘)))
Assertion
Ref Expression
prodfrec (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁)))
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝐺

Proof of Theorem prodfrec
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfn0.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 13432 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 fveq2 6822 . . . . 5 (𝑚 = 𝑀 → (seq𝑀( · , 𝐺)‘𝑚) = (seq𝑀( · , 𝐺)‘𝑀))
5 fveq2 6822 . . . . . 6 (𝑚 = 𝑀 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑀))
65oveq2d 7362 . . . . 5 (𝑚 = 𝑀 → (1 / (seq𝑀( · , 𝐹)‘𝑚)) = (1 / (seq𝑀( · , 𝐹)‘𝑀)))
74, 6eqeq12d 2747 . . . 4 (𝑚 = 𝑀 → ((seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚)) ↔ (seq𝑀( · , 𝐺)‘𝑀) = (1 / (seq𝑀( · , 𝐹)‘𝑀))))
87imbi2d 340 . . 3 (𝑚 = 𝑀 → ((𝜑 → (seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚))) ↔ (𝜑 → (seq𝑀( · , 𝐺)‘𝑀) = (1 / (seq𝑀( · , 𝐹)‘𝑀)))))
9 fveq2 6822 . . . . 5 (𝑚 = 𝑛 → (seq𝑀( · , 𝐺)‘𝑚) = (seq𝑀( · , 𝐺)‘𝑛))
10 fveq2 6822 . . . . . 6 (𝑚 = 𝑛 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑛))
1110oveq2d 7362 . . . . 5 (𝑚 = 𝑛 → (1 / (seq𝑀( · , 𝐹)‘𝑚)) = (1 / (seq𝑀( · , 𝐹)‘𝑛)))
129, 11eqeq12d 2747 . . . 4 (𝑚 = 𝑛 → ((seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚)) ↔ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))))
1312imbi2d 340 . . 3 (𝑚 = 𝑛 → ((𝜑 → (seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚))) ↔ (𝜑 → (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛)))))
14 fveq2 6822 . . . . 5 (𝑚 = (𝑛 + 1) → (seq𝑀( · , 𝐺)‘𝑚) = (seq𝑀( · , 𝐺)‘(𝑛 + 1)))
15 fveq2 6822 . . . . . 6 (𝑚 = (𝑛 + 1) → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘(𝑛 + 1)))
1615oveq2d 7362 . . . . 5 (𝑚 = (𝑛 + 1) → (1 / (seq𝑀( · , 𝐹)‘𝑚)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))))
1714, 16eqeq12d 2747 . . . 4 (𝑚 = (𝑛 + 1) → ((seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚)) ↔ (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1)))))
1817imbi2d 340 . . 3 (𝑚 = (𝑛 + 1) → ((𝜑 → (seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚))) ↔ (𝜑 → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))))))
19 fveq2 6822 . . . . 5 (𝑚 = 𝑁 → (seq𝑀( · , 𝐺)‘𝑚) = (seq𝑀( · , 𝐺)‘𝑁))
20 fveq2 6822 . . . . . 6 (𝑚 = 𝑁 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑁))
2120oveq2d 7362 . . . . 5 (𝑚 = 𝑁 → (1 / (seq𝑀( · , 𝐹)‘𝑚)) = (1 / (seq𝑀( · , 𝐹)‘𝑁)))
2219, 21eqeq12d 2747 . . . 4 (𝑚 = 𝑁 → ((seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚)) ↔ (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁))))
2322imbi2d 340 . . 3 (𝑚 = 𝑁 → ((𝜑 → (seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚))) ↔ (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁)))))
24 eluzfz1 13431 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
251, 24syl 17 . . . . . 6 (𝜑𝑀 ∈ (𝑀...𝑁))
26 fveq2 6822 . . . . . . . . 9 (𝑘 = 𝑀 → (𝐺𝑘) = (𝐺𝑀))
27 fveq2 6822 . . . . . . . . . 10 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2827oveq2d 7362 . . . . . . . . 9 (𝑘 = 𝑀 → (1 / (𝐹𝑘)) = (1 / (𝐹𝑀)))
2926, 28eqeq12d 2747 . . . . . . . 8 (𝑘 = 𝑀 → ((𝐺𝑘) = (1 / (𝐹𝑘)) ↔ (𝐺𝑀) = (1 / (𝐹𝑀))))
3029imbi2d 340 . . . . . . 7 (𝑘 = 𝑀 → ((𝜑 → (𝐺𝑘) = (1 / (𝐹𝑘))) ↔ (𝜑 → (𝐺𝑀) = (1 / (𝐹𝑀)))))
31 prodfrec.4 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) = (1 / (𝐹𝑘)))
3231expcom 413 . . . . . . 7 (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐺𝑘) = (1 / (𝐹𝑘))))
3330, 32vtoclga 3532 . . . . . 6 (𝑀 ∈ (𝑀...𝑁) → (𝜑 → (𝐺𝑀) = (1 / (𝐹𝑀))))
3425, 33mpcom 38 . . . . 5 (𝜑 → (𝐺𝑀) = (1 / (𝐹𝑀)))
35 eluzel2 12737 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
361, 35syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
37 seq1 13921 . . . . . 6 (𝑀 ∈ ℤ → (seq𝑀( · , 𝐺)‘𝑀) = (𝐺𝑀))
3836, 37syl 17 . . . . 5 (𝜑 → (seq𝑀( · , 𝐺)‘𝑀) = (𝐺𝑀))
39 seq1 13921 . . . . . . 7 (𝑀 ∈ ℤ → (seq𝑀( · , 𝐹)‘𝑀) = (𝐹𝑀))
4036, 39syl 17 . . . . . 6 (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) = (𝐹𝑀))
4140oveq2d 7362 . . . . 5 (𝜑 → (1 / (seq𝑀( · , 𝐹)‘𝑀)) = (1 / (𝐹𝑀)))
4234, 38, 413eqtr4d 2776 . . . 4 (𝜑 → (seq𝑀( · , 𝐺)‘𝑀) = (1 / (seq𝑀( · , 𝐹)‘𝑀)))
4342a1i 11 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( · , 𝐺)‘𝑀) = (1 / (seq𝑀( · , 𝐹)‘𝑀))))
44 oveq1 7353 . . . . . . . . 9 ((seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛)) → ((seq𝑀( · , 𝐺)‘𝑛) · (𝐺‘(𝑛 + 1))) = ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (𝐺‘(𝑛 + 1))))
45443ad2ant3 1135 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → ((seq𝑀( · , 𝐺)‘𝑛) · (𝐺‘(𝑛 + 1))) = ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (𝐺‘(𝑛 + 1))))
46 fzofzp1 13664 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁))
47 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → (𝐺𝑘) = (𝐺‘(𝑛 + 1)))
48 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
4948oveq2d 7362 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → (1 / (𝐹𝑘)) = (1 / (𝐹‘(𝑛 + 1))))
5047, 49eqeq12d 2747 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 + 1) → ((𝐺𝑘) = (1 / (𝐹𝑘)) ↔ (𝐺‘(𝑛 + 1)) = (1 / (𝐹‘(𝑛 + 1)))))
5150imbi2d 340 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐺𝑘) = (1 / (𝐹𝑘))) ↔ (𝜑 → (𝐺‘(𝑛 + 1)) = (1 / (𝐹‘(𝑛 + 1))))))
5251, 32vtoclga 3532 . . . . . . . . . . . . 13 ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐺‘(𝑛 + 1)) = (1 / (𝐹‘(𝑛 + 1)))))
5346, 52syl 17 . . . . . . . . . . . 12 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (𝐺‘(𝑛 + 1)) = (1 / (𝐹‘(𝑛 + 1)))))
5453impcom 407 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑛 + 1)) = (1 / (𝐹‘(𝑛 + 1))))
5554oveq2d 7362 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (𝐺‘(𝑛 + 1))) = ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (1 / (𝐹‘(𝑛 + 1)))))
56 1cnd 11107 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 1 ∈ ℂ)
57 elfzouz 13563 . . . . . . . . . . . . . 14 (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ𝑀))
5857adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝑛 ∈ (ℤ𝑀))
59 elfzouz2 13574 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (𝑀..^𝑁) → 𝑁 ∈ (ℤ𝑛))
60 fzss2 13464 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ𝑛) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
6159, 60syl 17 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (𝑀..^𝑁) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
6261sselda 3934 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (𝑀..^𝑁) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑘 ∈ (𝑀...𝑁))
63 prodfn0.2 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
6462, 63sylan2 593 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (𝑀..^𝑁) ∧ 𝑘 ∈ (𝑀...𝑛))) → (𝐹𝑘) ∈ ℂ)
6564anassrs 467 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℂ)
66 mulcl 11090 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
6766adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
6858, 65, 67seqcl 13929 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ)
6948eleq1d 2816 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘(𝑛 + 1)) ∈ ℂ))
7069imbi2d 340 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐹𝑘) ∈ ℂ) ↔ (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ)))
7163expcom 413 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐹𝑘) ∈ ℂ))
7270, 71vtoclga 3532 . . . . . . . . . . . . . 14 ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ))
7346, 72syl 17 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ))
7473impcom 407 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
75 prodfn0.3 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ≠ 0)
7662, 75sylan2 593 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (𝑀..^𝑁) ∧ 𝑘 ∈ (𝑀...𝑛))) → (𝐹𝑘) ≠ 0)
7776anassrs 467 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ≠ 0)
7858, 65, 77prodfn0 15801 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) ≠ 0)
7948neeq1d 2987 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ≠ 0 ↔ (𝐹‘(𝑛 + 1)) ≠ 0))
8079imbi2d 340 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐹𝑘) ≠ 0) ↔ (𝜑 → (𝐹‘(𝑛 + 1)) ≠ 0)))
8175expcom 413 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐹𝑘) ≠ 0))
8280, 81vtoclga 3532 . . . . . . . . . . . . . 14 ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ≠ 0))
8346, 82syl 17 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ≠ 0))
8483impcom 407 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ≠ 0)
8556, 68, 56, 74, 78, 84divmuldivd 11938 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (1 / (𝐹‘(𝑛 + 1)))) = ((1 · 1) / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
86 1t1e1 12282 . . . . . . . . . . . 12 (1 · 1) = 1
8786oveq1i 7356 . . . . . . . . . . 11 ((1 · 1) / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
8885, 87eqtrdi 2782 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (1 / (𝐹‘(𝑛 + 1)))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
8955, 88eqtrd 2766 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (𝐺‘(𝑛 + 1))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
90893adant3 1132 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (𝐺‘(𝑛 + 1))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
9145, 90eqtrd 2766 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → ((seq𝑀( · , 𝐺)‘𝑛) · (𝐺‘(𝑛 + 1))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
92 seqp1 13923 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐺)‘𝑛) · (𝐺‘(𝑛 + 1))))
9357, 92syl 17 . . . . . . . 8 (𝑛 ∈ (𝑀..^𝑁) → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐺)‘𝑛) · (𝐺‘(𝑛 + 1))))
94933ad2ant2 1134 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐺)‘𝑛) · (𝐺‘(𝑛 + 1))))
95 seqp1 13923 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
9657, 95syl 17 . . . . . . . . 9 (𝑛 ∈ (𝑀..^𝑁) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
9796oveq2d 7362 . . . . . . . 8 (𝑛 ∈ (𝑀..^𝑁) → (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
98973ad2ant2 1134 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
9991, 94, 983eqtr4d 2776 . . . . . 6 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))))
100993exp 1119 . . . . 5 (𝜑 → (𝑛 ∈ (𝑀..^𝑁) → ((seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛)) → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))))))
101100com12 32 . . . 4 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → ((seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛)) → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))))))
102101a2d 29 . . 3 (𝑛 ∈ (𝑀..^𝑁) → ((𝜑 → (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → (𝜑 → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))))))
1038, 13, 18, 23, 43, 102fzind2 13688 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁))))
1043, 103mpcom 38 1 (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wss 3902  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   / cdiv 11774  cz 12468  cuz 12732  ...cfz 13407  ..^cfzo 13554  seqcseq 13908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909
This theorem is referenced by:  prodfdiv  15803
  Copyright terms: Public domain W3C validator