MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchr1cl Structured version   Visualization version   GIF version

Theorem dchr1cl 27313
Description: Closure of the principal Dirichlet character. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrn0.b 𝐵 = (Base‘𝑍)
dchrn0.u 𝑈 = (Unit‘𝑍)
dchr1cl.o 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
dchr1cl.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
dchr1cl (𝜑1𝐷)
Distinct variable groups:   𝐵,𝑘   𝑈,𝑘   𝑘,𝑁   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝐷(𝑘)   1 (𝑘)   𝐺(𝑘)

Proof of Theorem dchr1cl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchr1cl.o . 2 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
2 dchrmhm.g . . 3 𝐺 = (DChr‘𝑁)
3 dchrmhm.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
4 dchrn0.b . . 3 𝐵 = (Base‘𝑍)
5 dchrn0.u . . 3 𝑈 = (Unit‘𝑍)
6 dchr1cl.n . . 3 (𝜑𝑁 ∈ ℕ)
7 dchrmhm.b . . 3 𝐷 = (Base‘𝐺)
8 eqidd 2741 . . 3 (𝑘 = 𝑥 → 1 = 1)
9 eqidd 2741 . . 3 (𝑘 = 𝑦 → 1 = 1)
10 eqidd 2741 . . 3 (𝑘 = (𝑥(.r𝑍)𝑦) → 1 = 1)
11 eqidd 2741 . . 3 (𝑘 = (1r𝑍) → 1 = 1)
12 1cnd 11285 . . 3 ((𝜑𝑘𝑈) → 1 ∈ ℂ)
13 1t1e1 12455 . . . . 5 (1 · 1) = 1
1413eqcomi 2749 . . . 4 1 = (1 · 1)
1514a1i 11 . . 3 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 1 = (1 · 1))
16 eqidd 2741 . . 3 (𝜑 → 1 = 1)
172, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16dchrelbasd 27301 . 2 (𝜑 → (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0)) ∈ 𝐷)
181, 17eqeltrid 2848 1 (𝜑1𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  ifcif 4548  cmpt 5249  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   · cmul 11189  cn 12293  Basecbs 17258  .rcmulr 17312  1rcur 20208  Unitcui 20381  ℤ/nczn 21536  DChrcdchr 27294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-0g 17501  df-imas 17568  df-qus 17569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-nsg 19164  df-eqg 19165  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-2idl 21283  df-cnfld 21388  df-zring 21481  df-zn 21540  df-dchr 27295
This theorem is referenced by:  dchrmullid  27314  dchrabl  27316  dchr1  27319
  Copyright terms: Public domain W3C validator