MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchr1cl Structured version   Visualization version   GIF version

Theorem dchr1cl 25831
Description: Closure of the principal Dirichlet character. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrn0.b 𝐵 = (Base‘𝑍)
dchrn0.u 𝑈 = (Unit‘𝑍)
dchr1cl.o 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
dchr1cl.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
dchr1cl (𝜑1𝐷)
Distinct variable groups:   𝐵,𝑘   𝑈,𝑘   𝑘,𝑁   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝐷(𝑘)   1 (𝑘)   𝐺(𝑘)

Proof of Theorem dchr1cl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchr1cl.o . 2 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
2 dchrmhm.g . . 3 𝐺 = (DChr‘𝑁)
3 dchrmhm.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
4 dchrn0.b . . 3 𝐵 = (Base‘𝑍)
5 dchrn0.u . . 3 𝑈 = (Unit‘𝑍)
6 dchr1cl.n . . 3 (𝜑𝑁 ∈ ℕ)
7 dchrmhm.b . . 3 𝐷 = (Base‘𝐺)
8 eqidd 2825 . . 3 (𝑘 = 𝑥 → 1 = 1)
9 eqidd 2825 . . 3 (𝑘 = 𝑦 → 1 = 1)
10 eqidd 2825 . . 3 (𝑘 = (𝑥(.r𝑍)𝑦) → 1 = 1)
11 eqidd 2825 . . 3 (𝑘 = (1r𝑍) → 1 = 1)
12 1cnd 10628 . . 3 ((𝜑𝑘𝑈) → 1 ∈ ℂ)
13 1t1e1 11792 . . . . 5 (1 · 1) = 1
1413eqcomi 2833 . . . 4 1 = (1 · 1)
1514a1i 11 . . 3 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 1 = (1 · 1))
16 eqidd 2825 . . 3 (𝜑 → 1 = 1)
172, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16dchrelbasd 25819 . 2 (𝜑 → (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0)) ∈ 𝐷)
181, 17eqeltrid 2920 1 (𝜑1𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  ifcif 4449  cmpt 5132  cfv 6343  (class class class)co 7145  0cc0 10529  1c1 10530   · cmul 10534  cn 11630  Basecbs 16479  .rcmulr 16562  1rcur 19247  Unitcui 19385  ℤ/nczn 20643  DChrcdchr 25812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-1st 7679  df-2nd 7680  df-tpos 7882  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-oadd 8096  df-er 8279  df-ec 8281  df-qs 8285  df-map 8398  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-sup 8897  df-inf 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11693  df-3 11694  df-4 11695  df-5 11696  df-6 11697  df-7 11698  df-8 11699  df-9 11700  df-n0 11891  df-z 11975  df-dec 12092  df-uz 12237  df-fz 12891  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-0g 16711  df-imas 16777  df-qus 16778  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-mhm 17952  df-grp 18102  df-minusg 18103  df-sbg 18104  df-subg 18272  df-nsg 18273  df-eqg 18274  df-cmn 18904  df-abl 18905  df-mgp 19236  df-ur 19248  df-ring 19295  df-cring 19296  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-sra 19937  df-rgmod 19938  df-lidl 19939  df-rsp 19940  df-2idl 19998  df-cnfld 20539  df-zring 20611  df-zn 20647  df-dchr 25813
This theorem is referenced by:  dchrmulid2  25832  dchrabl  25834  dchr1  25837
  Copyright terms: Public domain W3C validator