MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchr1cl Structured version   Visualization version   GIF version

Theorem dchr1cl 27189
Description: Closure of the principal Dirichlet character. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrn0.b 𝐵 = (Base‘𝑍)
dchrn0.u 𝑈 = (Unit‘𝑍)
dchr1cl.o 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
dchr1cl.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
dchr1cl (𝜑1𝐷)
Distinct variable groups:   𝐵,𝑘   𝑈,𝑘   𝑘,𝑁   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝐷(𝑘)   1 (𝑘)   𝐺(𝑘)

Proof of Theorem dchr1cl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchr1cl.o . 2 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
2 dchrmhm.g . . 3 𝐺 = (DChr‘𝑁)
3 dchrmhm.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
4 dchrn0.b . . 3 𝐵 = (Base‘𝑍)
5 dchrn0.u . . 3 𝑈 = (Unit‘𝑍)
6 dchr1cl.n . . 3 (𝜑𝑁 ∈ ℕ)
7 dchrmhm.b . . 3 𝐷 = (Base‘𝐺)
8 eqidd 2732 . . 3 (𝑘 = 𝑥 → 1 = 1)
9 eqidd 2732 . . 3 (𝑘 = 𝑦 → 1 = 1)
10 eqidd 2732 . . 3 (𝑘 = (𝑥(.r𝑍)𝑦) → 1 = 1)
11 eqidd 2732 . . 3 (𝑘 = (1r𝑍) → 1 = 1)
12 1cnd 11107 . . 3 ((𝜑𝑘𝑈) → 1 ∈ ℂ)
13 1t1e1 12282 . . . . 5 (1 · 1) = 1
1413eqcomi 2740 . . . 4 1 = (1 · 1)
1514a1i 11 . . 3 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 1 = (1 · 1))
16 eqidd 2732 . . 3 (𝜑 → 1 = 1)
172, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16dchrelbasd 27177 . 2 (𝜑 → (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0)) ∈ 𝐷)
181, 17eqeltrid 2835 1 (𝜑1𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  ifcif 4472  cmpt 5170  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007   · cmul 11011  cn 12125  Basecbs 17120  .rcmulr 17162  1rcur 20099  Unitcui 20273  ℤ/nczn 21439  DChrcdchr 27170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-imas 17412  df-qus 17413  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-nsg 19037  df-eqg 19038  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-subrng 20461  df-subrg 20485  df-lmod 20795  df-lss 20865  df-lsp 20905  df-sra 21107  df-rgmod 21108  df-lidl 21145  df-rsp 21146  df-2idl 21187  df-cnfld 21292  df-zring 21384  df-zn 21443  df-dchr 27171
This theorem is referenced by:  dchrmullid  27190  dchrabl  27192  dchr1  27195
  Copyright terms: Public domain W3C validator